Home | Current | Past volumes | About | Login | Notify | Contact | Search
 Probability Surveys > Vol. 1 (2004) open journal systems 

Large deviations and stochastic calculus for large random matrices

Alice Guionnet, Ecole Normale Superieure de Lyon

Large random matrices appear in different fields of mathematics and physics such as combinatorics, probability theory, statistics, operator theory, number theory, quantum field theory, string theory etc... In the last ten years, they attracted lots of interests, in particular due to a serie of mathematical breakthroughs allowing for instance a better understanding of local properties of their spectrum, answering universality questions, connecting these issues with growth processes etc. In this survey, we shall discuss the problem of the large deviations of the empirical measure of Gaussian random matrices, and more generally of the trace of words of independent Gaussian random matrices. We shall describe how such issues are motivated either in physics/combinatorics by the study of the so-called matrix models or in free probability by the definition of a non-commutative entropy. We shall show how classical large deviations techniques can be used in this context. These lecture notes are supposed to be accessible to non probabilists and non free-probabilists.

AMS 2000 subject classifications: Primary 60F10, 15A52; secondary 46L50.

Keywords: Large deviations, random matrices, non-commutative measure, integration.

Creative Common LOGO

Full Text: PDF

Guionnet, Alice, Large deviations and stochastic calculus for large random matrices, Probability Surveys, 1, (2004), 72-172 (electronic).


[1]   L. AAGARD; Thenon-microstates free entropy dimension of DT-operators. Preprint Syddansk Universitet (2003)

[2]   G. ANDERSON, O. ZEITOUNI; A clt for a band matrix model, preprint (2004)

[3]   A. APTEKAREV, P. BLEHER, A. KUIJLAARS ; Large n limit of Gaussian matrices with external source, part II. http://arxiv.org/abs/math-ph/0408041

[4]   Z.D. BAI; Convergence rate of expected spectral distributions of large random matrices I. Wigner matrices Ann. Probab. 21 : 625–648 (1993) MR1217559

[5]   Z.D. BAI; Methodologies in spectral analysis of large dimensional random matrices: a review, Statistica Sinica 9, No 3: 611–661 (1999) MR1711663

[6]   Z.D. BAI, J.F. YAO; On the convergence of the spectral empirical process of Wigner matrices, preprint (2004)

[7]   Z.D. BAI, Y.Q. YIN; Limit of the smallest eigenvalue of a large-dimensional sample covariance matrix. Ann. Probab. 21:1275–1294 (1993) MR1235416

[8]   J.BAIK, P. DEIFT, K. JOHANSSON; On the distribution of the length of the longest increasing subsequence of random perturbations J. Amer. Math. Soc. 12: 1119–1178 (1999) MR1682248

[9]   G. BEN AROUS, A. DEMBO, A. GUIONNET, Aging of spherical spin glasses Prob. Th. Rel. Fields 120: 1–67 (2001) MR1856194

[10]   G. BEN AROUS, A. GUIONNET, Large deviations for Wigner’s law and Voiculescu’s non-commutative entropy, Prob. Th. Rel. Fields 108: 517–542 (1997). MR1465640

[11]   G. BEN AROUS, O. ZEITOUNI; Large deviations from the circular law ESAIM Probab. Statist. 2: 123–134 (1998) MR1660943

[12]   F.A. BEREZIN; Some remarks on the Wigner distribution, Teo. Mat. Fiz. 17, N. 3: 1163–1171 (English) (1973) MR468719

[13]   H. BERCOVICI and D. VOICULESCU; Free convolution of measures with unbounded support. Indiana Univ. Math. J. 42: 733–773 (1993) MR1254116

[14]   M. BERTOLA; Second and third observables of the two-matrix model. http://arxiv.org/abs/hep-th/0309192

[15]   P.BIANE On the Free convolution with a Semi-circular distribution Indiana Univ. Math. J. 46 : 705–718 (1997) MR1488333

[16]   P. BIANE; Calcul stochastique non commutatif, Ecole d’été de St Flour XXIII 1608: 1–96 (1993)

[17]   P. BIANE, R. SPEICHER; Stochastic calculus with respect to free brownian motion and analysis on Wigner space, Prob. Th. Rel. Fields, 112: 373–409 (1998) MR1660906

[18]   P. BIANE, M. CAPITAINE, A. GUIONNET; Large deviation bounds for the law of the trajectories of the Hermitian Brownian motion. Invent. Math.152: 433–459 (2003) MR1975007

[19]   P. BLEHER, A. KUIJLAARS ; Large n limit of Gaussian matrices with external source, part I. http://arxiv.org/abs/math-ph/0402042

[20]   E. BOLTHAUSEN; Laplace approximations for sums of independent random vectors Probab. Theory Relat. Fields 72 :305–318 (1986) MR836280

[21]   D.V. BOULATOV, V. KAZAKOV ; The Ising model on a random planar lattice: the structure of the phase transition and the exact critical exponents Phys. Lett. B 186: 379–384 (1987) MR882684

[22]   M. BOUSQUET MELOU, G. SCHAEFFER; The degree distribution in bipartite planar maps: applications to the Ising model http://front.math.ucdavis.edu/math.CO/0211070

[23]   A. BOUTET DE MONVEL, A. KHORUNZHI; On universality of the smoothed eigenvalue density of large random matrices J. Phys. A 32: 413–417 (1999) MR1733840

[24]   A. BOUTET DE MONVEL, A. KHORUNZHI; On the norm and eigenvalue distribution of large random matrices. Ann. Probab. 27: 913–944 (1999) MR1698983

[25]   A. BOUTET DE MONVEL, M. SHCHERBINA; On the norm of random matrices, Mat. Zametki57: 688–698 (1995) MR1347371

[26]   Y. BRENIER, Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations Comm. Pure. Appl. Math. 52: 411–452 (1999) MR1658919

[27]   N. BROWN; Finite free entropy and free group factors http://front.math.ucdavis.edu/math.OA/0403294

[28]   T. CABANAL-DUVILLARD; Fluctuations de la loi spectrale des grandes matrices aléatoires, Ann. Inst. H. Poincaré 37: 373–402 (2001) MR1831988

[29]   T. CABANAL-DUVILLARD, A. GUIONNET; Large deviations upper bounds and non commutative entropies for some matrices ensembles, Annals Probab. 29 : 1205–1261 (2001) MR1872742

[30]   T. CABANAL-DUVILLARD, A. GUIONNET; Discussions around non-commutative entropies, Adv. Math. 174: 167–226 (2003) MR1963692

[31]   G. CASATI, V. GIRKO; Generalized Wigner law for band random matrices, Random Oper. Stochastic Equations 1: 279–286 (1993) MR1254409

[32]   S. CHADHA, G. MADHOUX, M. L. MEHTA; A method of integration over matrix variables II, J. Phys. A. 14: 579–586 (1981) MR605258

[33]   T. CHIYONOBU; A limit formula for a class of Gibbs measures with long range pair interactions J. Math. Sci. Univ. Tokyo7;463–486 (2000) MR1792737

[34]   B. COLLINS; Moments and cumulants of polynomial random variables on unitary groups, the Itzykson-Zuber integral, and free probability Int. Math. Res. Not. 17: 953–982 (2003)

[35]   A. CONNES, D. SHLYAKHTENKO; L2-Homology for von Neumann Algebras http://front.math.ucdavis.edu/math.OA/0309343

[36]   M. CORAM , P. DIACONIS; New test of the correspondence between unitary eigenvalues and the zeros of Riemann’s zeta function, Preprint Feb 2000, Stanford University

[37]   P. DIACONIS , M. SHAHSHAHANI; On the eigenvalues of random matrices. Jour. Appl. Probab. 31 A: 49–62 (1994) MR1274717

[38]   P. DIACONIS , A. GANGOLLI; Rectangular arrays with fixed margins IMA Vol. Math. Appl. 72 : 15–41 (1995)

[39]   A. DEMBO , F. COMETS; Large deviations for random matrices and random graphs, preprint (2004)

[40]   A. DEMBO , A. VERSHIK , O. ZEITOUNI; Large deviations for integer paprtitions Markov Proc. Rel. Fields 6: 147–179 (2000) MR1778750

[41]   A. DEMBO, O. ZEITOUNI; Large deviations techniques and applications, second edition, Springer (1998). MR1619036

[42]   A. DEMBO, A. GUIONNET, O. ZEITOUNI; Moderate Deviations for the Spectral Measure of Random Matrices Ann. Inst. H. Poincaré 39: 1013–1042 (2003) MR2010395

[43]   J.D. DEUSCHEL, D. STROOCK; large deviations Pure Appl. Math. 137 Academic Press (1989)

[44]   K. DYKEMA, U. HAAGERUP; Invariant subspaces of the quasinilpotent DT-operator J. Funct. Anal. 209: 332–366 (2004) MR2044226

[45]   F.J. DYSON; A Brownian motion model for the eigenvalues of a random matrix J. Mathematical Phys. 3: 1191–1198 (1962) MR148397

[46]   N.M. ERCOLANI, K.D.T-R McLAUGHLIN; Asymptotics of the partition function for random matrices via Riemann-Hilbert techniques, and applications to graphical enumeration. Int. Math. res. Notes 47 : 755–820 (2003)

[47]   B. EYNARD; Eigenvalue distribution of large random matrices, from one matrix to several coupled matrices, Nuclear Phys. B. 506: 633–664 (1997). MR1488592

[48]   B. EYNARD; Random matrices,

[49]   B. EYNARD; Master loop equations, free energy and correlations for the chain of matrices. http://arxiv.org/abs/hep-th/0309036

[50]   B. EYNARD, A. KOKOTOV, D. KOROTKIN; 1∕N2 correction to free energy in hermitian two-matrix model , http://arxiv.org/abs/hep-th/0401166

[51]   H. FOLLMER;An entropy approach to the time reversal of diffusion processes Lect. Notes in control and inform. Sci. 69: 156–163 (1984)

[52]   J. FONTBONA; Uniqueness for a weak non linear evolution equation and large deviations for diffusing particles with electrostatic repulsion Stoch. Proc. Appl. 112: 119–144 (2004) MR2062570

[53]   P. FORRESTER http://www.ms.unimelb.edu.au/~matpjf/matpjf.html

[54]   Y. FYODOROV, H. SOMMERS, B. KHORUZHENKO; Universality in the random matrix spectra in the regime of weak non-Hermiticity. Classical and quantum chaos. Ann. Inst. Poincare. Phys. Theor. 68: 449–489 (1998) MR1634312

[55]   D. GABORIAU; Invariants 2 de relations d’équivalences et de grroupes Publ. Math. Inst. Hautes. Études Sci. 95: 93–150(2002)

[56]   L. GE; Applications of free entropy to finite von Neumann algebras, Amer. J. Math. 119: 467–485(1997) MR1439556

[57]   L. GE; Applications of free entropy to finite von Neumann algebras II,Annals of Math. 147: 143–157(1998) MR1609522

[58]   GIRKO, V.; Theory of random determinants , Kluwer (1990)

[59]   T. GUHR, A. MUELLER-GROELING, H. A. WEIDENMULLER; random matrix theory in quantum Physics : Common concepts arXiv:cond-mat/9707301(1997)

[60]   A. GUIONNET; Large deviation upper bounds and central limit theorems for band matrices, Ann. Inst. H. Poincaré Probab. Statist 38 : 341–384 (2002) MR1899457

[61]   A. GUIONNET; First order asymptotic of matrix integrals; a rigorous approach toward the understanding of matrix models, Comm.Math.Phys 244: 527–569 (2004) MR2034487

[62]   A. GUIONNET , M. MAIDA; Character expansion method for the first order asymptotics of a matrix integral. http://front.math.ucdavis.edu/math.PR/0401229

[63]   A. GUIONNET , M. MAIDA; An asymptotic log-Fourier interpretation of the R-transform. http://front.math.ucdavis.edu/math.PR/0406121

[64]   A. GUIONNET, O. ZEITOUNI; Concentration of the spectral measure for large matrices, Electron. Comm. Probab. 5: 119–136 (2000) MR1781846

[65]   A. GUIONNET, O. ZEITOUNI; Large deviations asymptotics for spherical integrals, Jour. Funct. Anal. 188: 461–515 (2001)

[66]   A. GUIONNET, O. ZEITOUNI; Addendum to Large deviations asymptotics for spherical integrals, To appear in Jour. Funct. Anal. (2004)

[67]   F. HIAI; Free analog of pressure and its Legendre transform http://front.math.ucdavis.edu/math.OA/0403210

[68]   J. HARER, D. ZAGIER; The Euler caracteristic of the moduli space of curves Invent. Math. 85: 457–485(1986) MR848681

[69]   U. HAAGERUP, S. THORBJORNSEN; A new application of Random matrices : Ext(Cred*(F2)) is not a group. http://fr.arxiv.org/pdf/math.OA/0212265.

[70]   S. HANLY, D. TSE; Linear multiuser receivers: effective interference, effective bandwidth and user capacity. IEEE Trans. Inform. Theory 45 , no. 2, 641–657 (1999) MR1677023

[71]   F. HIAI, D. PETZ; Eigenvalue density of the Wishart matrix and large deviations, Inf. Dim. Anal. Quantum Probab. Rel. Top. 1: 633–646 (1998) MR1665279

[72]   A. T. JAMES; Distribution of matrix variates and latent roots derived from normal samples, Ann. Math. Stat. 35: 475–501 (1964) MR181057

[73]   K. JOHANNSON, The longest increasing subsequence in a random permutation and a unitary random matrix model Math. Res. Lett. 5: 63–82 (1998) MR1618351

[74]   K. JOHANSSON; On fluctuations of eigenvalues of random Hermitian matrices, Duke J. Math. 91: 151–204 (1998) MR1487983

[75]   K. JOHANSSON; Shape fluctuations and random matrices, Comm. Math. Phys. 209: 437–476 (2000) MR1737991

[76]   K. JOHANSSON; Universality of the local spacing distribution in certain ensembles of Hermitian Wigner matrices, Comm. Math. Phys. 215: 683–705 (2001) MR1810949

[77]   K. JOHANSSON; Discrete othogonal polynomial ensembles and the Plancherel measure Ann. Math. 153: 259–296 (2001) MR1826414

[78]   K. JOHANSSON; Non-intersecting paths, random tilings and random matrices Probab. Th. Rel. Fields 123 : 225–280 (2002) MR1900323

[79]   K. JOHANSSON; Discrete Polynuclear Growth and Determinantal processes Comm. Math. Phys. 242: 277–329 (2003) MR2018275

[80]   I.M. JOHNSTONE; On the distribution of the largest principal component, Technical report No 2000-27

[81]   D. JONSSON; Some limit theorems for the eigenvalues of a sample covariance matrix, J. Mult. Anal. 12: 151–204 (1982)

[82]   I. KARATZAS, S. SHREVE, Brownian motion and stocahstic calculus. Second Edition. Graduate Texts in Mathematics 113 Springer-Verlag (1991) MR1121940

[83]   KARLIN S.; Coincidence probabilities and applications in combinatorics J. Appl. Prob. 25 A: 185-200 (1988) MR974581

[84]   R. KENYON, A. OKOUNKOV, S. SHEFFIELD; Dimers and Amoebae. http://front.math.ucdavis.edu/math-ph/0311005

[85]   S. KEROV, Asymptotic representation theory of the symmetric group and its applications in Analysis, AMS (2003)

[86]   C. KIPNIS and C. LANDIM; Scaling limits of interacting particle systems, Springer (1999)

[87]   C. KIPNIS and S. OLLA; Large deviations from the hydrodynamical limit for a system of independent Brownian motion Stochastics Stochastics Rep. 33: 17–25 (1990) MR1079929

[88]   C. KIPNIS, S. OLLA and S. R. S. VARADHAN; Hydrodynamics and Large Deviation for Simple Exclusion Processes Comm. Pure Appl. Math. 42: 115–137 (1989) MR978701

[89]   A. M. KHORUNZHY, B. A. KHORUZHENKO, L. A. PASTUR; Asymptotic properties of large random matrices with independent entries, J. Math. Phys. 37: 5033–5060 (1996) MR1411619

[90]   G. MAHOUX, M. MEHTA; A method of integration over matrix variables III, Indian J. Pure Appl. Math. 22: 531–546 (1991) MR1124025

[91]   A. MATYTSIN; On the large N-limit of the Itzykson-Zuber integral, Nuclear Physics B411: 805–820 (1994)

[92]   A. MATYTSIN, P. ZAUGG; Kosterlitz-Thouless phase transitions on discretized random surfaces, Nuclear Physics B497: 699–724 (1997) MR1463643

[93]   M. L. MEHTA; Random matrices, 2nd ed. Academic Press (1991)

[94]   M. L. MEHTA; A method of integration over matrix variables, Comm. Math. Phys. 79: 327–340 (1981) MR627056

[95]   I. MINEYEV, D. SHLYAKHTENKO; Non-microstates free entropy dimension for groups http://front.math.ucdavis.edu/math.OA/0312242

[96]   J. MINGO , R. SPEICHER; Second order freeness and Fluctuations of Random Matrices : I. Gaussian and Wishart matrices and cyclic Fock spaces http://front.math.ucdavis.edu/math.OA/0405191

[97]   J. MINGO; R. SPEICHER; P. SNIADY; Second order freeness and Fluctuations of Random Matrices : II. Unitary random matrices http://front.math.ucdavis.edu/math.OA/0405258

[98]   H. MONTGOMERY, Corrélations dans l’ensemble des zéros de la fonction zêta, Publ. Math. Univ. Bordeaux Année I (1972)

[99]   A. M. ODLYZKO; The 1020 zero of the Riemann zeta function and 70 Million of its neighbors, Math. Comput. 48: 273–308 (1987)

[100]   A. M. ODLYZKO; The 1022-nd zero of the Riemann zeta function.Amer. Math. Soc., Contemporary Math. Series 290: 139–144 (2002)

[101]   A. OKOUNKOV; The uses of random partitions http://front.math.ucdavis.edu/math-ph/0309015

[102]   L.A. PASTUR, Universality of the local eigenvalue statistics for a class of unitary random matrix ensembles J. Stat. Phys. 86: 109–147 (1997) MR1435193

[103]   L.A. PASTUR, V.A MARTCHENKO; The distribution of eigenvalues in certain sets of random matrices, Math. USSR-Sbornik 1: 457–483 (1967)

[104]   G.K. PEDERSEN, C*-algebras and their automorphism groups, London mathematical society monograph 14 (1989)

[105]   R.T. ROCKAFELLAR, Convex Analysis Princeton university press (1970)

[106]   H. ROST; Nonequilibrium behaviour of a many particle process : density profile and local equilibria Z. Wahrsch. Verw. Gebiete 58: 41–53 (1981) MR635270

[107]   B. SAGAN; The symmetric group. The Wadsworth Brooks/Cole Mathematics Series (1991)

[108]   D. SERRE; Sur le principe variationnel des équations de la mécanique des fluides parfaits. Math. Model. Num. Analysis 27: 739–758 (1993) MR1246997

[109]   D. SHLYAKHTENKO; Random Gaussian Band matrices and Freeness with Amalgation Int. Math. Res. Not. 20 1013–1025 (1996) MR1422374

[110]   Ya. SINAI, A. SOSHNIKOV; A central limit theorem for traces of large random matrices with independent matrix elements, Bol. Soc. Brasil. Mat. (N.S.) 29: 1–24 (1998). MR1620151

[111]   P. SNIADY; Multinomial identities arising from free probability theory J. Combin. Theory Ser. A 101: 1–19 (2003) MR1953277

[112]   A. SOSHNIKOV; Universality at the edge of the spectrum in Wigner random matrices, Comm. Math. Phys. 207: 697–733 (1999) MR1727234

[113]   R. SPEICHER; Free probability theory and non-crossing partitions Sem. Lothar. Combin. 39 (1997)

[114]   H. SPOHN, M. PRAHOFER; Scale invariance of the PNG droplet and the Airy process J. Statist. Phys. 108: 1071–1106 (2002) MR1933446

[115]   V.S. SUNDER, An invitation to von Neumann algebras, Universitext, Springer(1987)

[116]   I. TELATAR, D. TSE ; Capacity and mutual information of wideband multipath fading channels. IEEE Trans. Inform. Theory 46 no. 4, 1384–1400 (2000) MR1768556

[117]   C. TRACY, H. WIDOM; Level spacing distribution and the Airy kernel Comm. Math. Phys. 159: 151–174 (1994) MR1257246

[118]   C. A. TRACY, H. WIDOM; Universality of the distribution functions of random matrix theory, Integrable systems : from classical to quantum, CRM Proc. Lect. Notes 26: 251–264 (2001) MR1791893

[119]   F. G. TRICOMI; Integral equations, Interscience, New York (1957)

[120]   D. TSE, O. ZEITOUNI; Linear multiuser receivers in random environments, IEEE trans. IT. 46: 171–188 (2000)

[121]   D. VOICULESCU; Limit laws for random matrices and free products Invent. math. 104: 201–220 (1991) MR1094052

[122]   D. VOICULESCU; The analogues of Entropy and Fisher’s Information Measure in Free Probability Theory jour Commun. Math. Phys. 155: 71–92 (1993) MR1228526

[123]   D. VOICULESCU; The analogues of Entropy and Fisher’s Information Measure in Free Probability Theory, IIInvent. Math. 118: 411–440 (1994) MR1296352

[124]   D.V. VOICULESCU,The analogues of Entropy and Fisher’s Information Measure in Free Probability Theory, III. The absence of Cartan subalgebras Geom. Funct. Anal. 6: 172–199 (1996) MR1371236

[125]   D. VOICULESCU; The analogues of Entropy and Fisher’s Information Measure in Free Probability Theory, V : Noncommutative Hilbert Transforms Invent. Math. 132: 189–227 (1998) MR1618636

[126]   D. VOICULESCU; A Note on Cyclic Gradients Indiana Univ. Math. I 49: 837–841 (2000) MR1803213

[127]   D.V. VOICULESCU, A strengthened asymptotic freeness result for random matrices with applications to free entropy.Interat. Math. Res. Notices 1: 41–63 ( 1998) MR1601878

[128]   D. VOICULESCU; Lectures on free probability theory, Lecture Notes in Mathematics 1738: 283–349 (2000).

[129]   D. VOICULESCU;Free entropy Bull. London Math. Soc. 34: 257–278 (2002) MR1887698

[130]   H. WEYL; The Classical Groups. Their Invariants and Representations Princeton University Press (1939) MR255

[131]   E. WIGNER; On the distribution of the roots of certain symmetric matrices, Ann. Math. 67: 325–327 (1958). MR95527

[132]   J. WISHART; The generalized product moment distribution in samples from a normal multivariate population, Biometrika 20: 35–52 (1928). MR937

[133]   S. ZELDITCH; Macdonald’s identities and the large N limit of Y M2 on the cylinder, Comm. Math. Phys. 245, 611–626 (2004) MR2045685

[134]   P. ZINN-JUSTIN; Universality of correlation functions of hermitian random matrices in an external field, Comm. Math. Phys. 194: 631–650 (1998). MR1631489

[135]   P. ZINN-JUSTIN; The dilute Potts model on random surfaces, J. Stat. Phys. 98: 245–264 (2000)

[136]   A. ZVONKIN, Matrix integrals and Map enumeration; an accessible introduction Math. Comput. Modelling 26 : 281–304 (1997) MR1492512

Home | Current | Past volumes | About | Login | Notify | Contact | Search

Probability Surveys. ISSN: 1549-5787