Home | Current | Past volumes | About | Login | Notify | Contact | Search
 Probability Surveys > Vol. 3 (2006) open journal systems 

Localization and delocalization of random interfaces

Yvan Velenik, CNRS and Université de Rouen

The study of effective interface models has been quite active recently, with a particular emphasis on the effect of various external potentials (wall, pinning potential, ...) leading to localization/delocalization transitions. I review some of the results that have been obtained. In particular, I discuss pinning by a local potential, entropic repulsion and the (pre)wetting transition, both for models with continuous and discrete heights. This text is based on lecture notes for a mini-course given during the workshop "Topics in Random Interfaces and Directed Polymers" held in Leipzig, September 12-17 2005.

AMS 2000 subject classifications: Primary 60K35, 82B41; secondary 82B24, 82B27.

Keywords: random interfaces, random surfaces, roughening, entropic repulsion, pinning, wetting, prewetting.

Creative Common LOGO

Full Text: PDF

Velenik, Yvan, Localization and delocalization of random interfaces, Probability Surveys, 3, (2006), 112-169 (electronic).


[1]   Abraham, D. B. (1980). Solvable model with a roughening transition for a planar Ising ferromagnet. Phys. Rev. Lett. 44, 18, 1165–1168. MR0567266

[2]   Abraham, D. B. (1981). Binding of a domain wall in the planar Ising ferromagnet. J. Phys. A 14, 9, L369–L372. MR0628361

[3]   Abraham, D. B. and Newman, C. M. (1989). Surfaces and Peierls contours: 3-d wetting and 2-d Ising percolation. Comm. Math. Phys. 125, 1, 181–200. MR1017746

[4]   Abraham, D. B. and Newman, C. M. (1991). The wetting transition in a random surface model. J. Statist. Phys. 63, 5-6, 1097–1111. MR1116049

[5]   Abraham, D. B. and Smith, E. R. (1986). An exactly solved model with a wetting transition. J. Statist. Phys. 43, 3-4, 621–643. MR0845731

[6]   Alexander, K. and Sidoravicius, V. (2006). Pinning of polymers and interfaces by random potentials. To appear in Ann. Appl. Probab.

[7]   Bertacchi, D. and Giacomin, G. (2002). Enhanced interface repulsion from quenched hard-wall randomness. Probab. Theory Related Fields 124, 4, 487–516. MR1942320

[8]   Bertacchi, D. and Giacomin, G. (2003). On the repulsion of an interface above a correlated substrate. Bull. Braz. Math. Soc. (N.S.) 34, 3, 401–415. Sixth Brazilian School in Probability (Ubatuba, 2002). MR2045166

[9]   Bertacchi, D. and Giacomin, G. (2004). Wall repulsion and mutual interface repulsion: a harmonic crystal model in high dimensions. Stochastic Process. Appl. 110, 1, 45–66. MR2052136

[10]   Biskup, M. and Kotecký, R. (2006). Phase coexistence of gradient Gibbs states. To appear in Probab. Theory Rel. Fields.

[11]   Bodineau, T., Giacomin, G., and Velenik, Y. (2001). On entropic reduction of fluctuations. J. Statist. Phys. 102, 5-6, 1439–1445. MR1830455

[12]   Bodineau, T., Ioffe, D., and Velenik, Y. (2000). Rigorous probabilistic analysis of equilibrium crystal shapes. J. Math. Phys. 41, 3, 1033–1098. Probabilistic techniques in equilibrium and nonequilibrium statistical physics. MR1757951

[13]   Bolthausen, E. (2000). Random walk representations and entropic repulsion for gradient models. In Infinite dimensional stochastic analysis (Amsterdam, 1999). Verh. Afd. Natuurkd. 1. Reeks. K. Ned. Akad. Wet., Vol. 52. R. Neth. Acad. Arts Sci., Amsterdam, 55–83. MR1831411

[14]   Bolthausen, E. (2002). Large deviations and interacting random walks. In Lectures on probability theory and statistics (Saint-Flour, 1999). Lecture Notes in Math., Vol. 1781. Springer, Berlin, 1–124. MR1915444

[15]   Bolthausen, E. and Brydges, D. (2001). Localization and decay of correlations for a pinned lattice free field in dimension two. In State of the art in probability and statistics (Leiden, 1999). IMS Lecture Notes Monogr. Ser., Vol. 36. Inst. Math. Statist., Beachwood, OH, 134–149. MR1836558

[16]   Bolthausen, E., Deuschel, J., and Giacomin, G. (2001). Entropic repulsion and the maximum of the two-dimensional harmonic crystal. Ann. Probab. 29, 4, 1670–1692. MR1880237

[17]   Bolthausen, E., Deuschel, J., and Zeitouni, O. (1995). Entropic repulsion of the lattice free field. Comm. Math. Phys. 170, 2, 417–443. MR1334403

[18]   Bolthausen, E., Deuschel, J., and Zeitouni, O. (2000a). Erratum: “Entropic repulsion of the lattice free field” [Comm. Math. Phys. 170 (1995), no. 2, 417–443; (96g:82012)]. Comm. Math. Phys. 209, 2, 547–548. MR1334403

[19]   Bolthausen, E., Deuschel, J.-D., and Zeitouni, O. (2000b). Absence of a wetting transition for a pinned harmonic crystal in dimensions three and larger. J. Math. Phys. 41, 3, 1211–1223. Probabilistic techniques in equilibrium and nonequilibrium statistical physics. MR1757956

[20]   Bolthausen, E. and Velenik, Y. (2001). Critical behavior of the massless free field at the depinning transition. Comm. Math. Phys. 223, 1, 161–203. MR1860764

[21]   Borgs, C., De Coninck, J., and Kotecký, R. (1999). An equilibrium lattice model of wetting on rough substrates. J. Statist. Phys. 94, 3-4, 299–320. MR1675355

[22]   Bovier, A. and Külske, C. (1994). A rigorous renormalization group method for interfaces in random media. Rev. Math. Phys. 6, 3, 413–496. MR1305590

[23]   Bovier, A. and Külske, C. (1996). There are no nice interfaces in (2+1)-dimensional SOS models in random media. J. Statist. Phys. 83, 3-4, 751–759. MR1386357

[24]   Brascamp, H. J. and Lieb, E. H. (1976). On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Functional Analysis 22, 4, 366–389. MR0450480

[25]   Brascamp, H. J., Lieb, E. H., and Lebowitz, J. L. (1975). The statistical mechanics of anharmonic lattices. In Proceedings of the 40th Session of the International Statistical Institute (Warsaw, 1975), Vol. 1. Invited papers. Bull. Inst. Internat. Statist. 46, 393–404 (1976). MR0676341

[26]   Bricmont, J., El Mellouki, A., and Fröhlich, J. (1986). Random surfaces in statistical mechanics: roughening, rounding, wetting,. J. Statist. Phys. 42, 5-6, 743–798. MR0833220

[27]   Brydges, D., Fröhlich, J., and Spencer, T. (1982). The random walk representation of classical spin systems and correlation inequalities. Comm. Math. Phys. 83, 1, 123–150. MR0648362

[28]   Burkhardt, T. W. (1981). Localisation-delocalisation transition in a solid-on-solid model with a pinning potential. J. Phys. A 14, 3, L63–L68. MR0605253

[29]   Caputo, P. and Velenik, Y. (2000). A note on wetting transition for gradient fields. Stochastic Process. Appl. 87, 1, 107–113. MR1751167

[30]   Cesi, F. and Martinelli, F. (1996). On the layering transition of an SOS surface interacting with a wall. I. Equilibrium results. J. Statist. Phys. 82, 3-4, 823–913. MR1372429

[31]   Chalker, J. T. (1981). The pinning of a domain wall by weakened bonds in two dimensions. J. Phys. A 14, 9, 2431–2440. MR0628379

[32]   Chalker, J. T. (1982). The pinning of an interface by a planar defect. J. Phys. A 15, 9, L481–L485. MR0673472

[33]   Chui, S. T. and Weeks, J. D. (1981). Pinning and roughening of one-dimensional models of interfaces and steps. Phys. Rev. B 23, 5, 2438–2441. MR0617533

[34]   Daviaud, O. (2006). Extremes of the discrete two-dimensional gaussian free field. To appear in Ann. Probab.

[35]   De Coninck, J., Dobrovolny, C., Miracle-Solé, S., and Ruiz, J. (2004). Wetting of heterogeneous surfaces at the mesoscopic scale. J. Statist. Phys. 114, 3-4, 575–604. MR2035626

[36]   De Coninck, J., Miracle-Solé, S., and Ruiz, J. (2003). Rigorous generalization of Young’s law for heterogeneous and rough substrates. J. Statist. Phys. 111, 1-2, 107–127. MR1964267

[37]   Delmotte, T. and Deuschel, J.-D. (2005). On estimating the derivatives of symmetric diffusions in stationary random environment, with applications to φ interface model. Probab. Theory Related Fields 133, 3, 358–390. MR2198017

[38]   Deuschel, J.-D. (1996). Entropic repulsion of the lattice free field. II. The 0-boundary case. Comm. Math. Phys. 181, 3, 647–665. MR1414304

[39]   Deuschel, J.-D. and Giacomin, G. (1999). Entropic repulsion for the free field: pathwise characterization in d 3. Comm. Math. Phys. 206, 2, 447–462. MR1722113

[40]   Deuschel, J.-D. and Giacomin, G. (2000). Entropic repulsion for massless fields. Stochastic Process. Appl. 89, 2, 333–354. MR1780295

[41]   Deuschel, J.-D., Giacomin, G., and Ioffe, D. (2000). Large deviations and concentration properties for φ interface models. Probab. Theory Related Fields 117, 1, 49–111. MR1759509

[42]   Deuschel, J.-D., Giacomin, G., and Zambotti, L. (2005). Scaling limits of equilibrium wetting models in (1+1)–dimension. Probab. Theory Related Fields 132, 4, 471–500. MR2198199

[43]   Deuschel, J.-D. and Velenik, Y. (2000). Non-Gaussian surface pinned by a weak potential. Probab. Theory Related Fields 116, 3, 359–377. MR1749279

[44]   Dinaburg, E. I. and Mazel, A. E. (1994). Layering transition in SOS model with external magnetic field. J. Statist. Phys. 74, 3-4, 533–563. MR1263384

[45]   Dobrushin, R. L. and Shlosman, S. B. (1980). Nonexistence of one- and two-dimensional Gibbs fields with noncompact group of continuous symmetries. In Multicomponent random systems. Adv. Probab. Related Topics, Vol. 6. Dekker, New York, 199–210. MR0599536

[46]   Dunlop, F., Magnen, J., and Rivasseau, V. (1992). Mass generation for an interface in the mean field regime. Ann. Inst. H. Poincaré Phys. Théor. 57, 4, 333–360. MR1198981

[47]   Dunlop, F., Magnen, J., and Rivasseau, V. (1994). Addendum: “Mass generation for an interface in the mean field regime” [Ann. Inst. H. Poincaré Phys. Théor. 57 (1992), no. 4, 333–360; (94c:82034)]. Ann. Inst. H. Poincaré Phys. Théor. 61, 2, 245–253. MR1198981

[48]   Dunlop, F., Magnen, J., Rivasseau, V., and Roche, P. (1992). Pinning of an interface by a weak potential. J. Statist. Phys. 66, 1-2, 71–98. MR1149482

[49]   Dunlop, F. and Topolski, K. (2000). Cassie’s law and concavity of wall tension with respect to disorder. J. Statist. Phys. 98, 5-6, 1115–1134. MR1751696

[50]   Fisher, M. E. (1984). Walks, walls, wetting, and melting. J. Statist. Phys. 34, 5-6, 667–729. MR0751710

[51]   Fisher, M. E. and Jin, A. J. (1992). Is short-range “critical” wetting a first-order transition? Phys. Rev. Lett. 69, 5, 792–795.

[52]   Fröhlich, J. and Park, Y. M. (1978). Correlation inequalities and the thermodynamic limit for classical and quantum continuous systems. Comm. Math. Phys. 59, 3, 235–266. MR0496191

[53]   Fröhlich, J. and Spencer, T. (1981). The Kosterlitz-Thouless transition in two-dimensional abelian spin systems and the Coulomb gas. Comm. Math. Phys. 81, 4, 527–602. MR0634447

[54]   Fröhlich, J. and Zegarliński, B. (1991). The phase transition in the discrete Gaussian chain with 1∕r2 interaction energy. J. Statist. Phys. 63, 3-4, 455–485. MR1115800

[55]   Funaki, T. (2005). Lectures on probability theory and statistics. Lecture Notes in Mathematics, Vol. 1869. Springer-Verlag, Berlin. Lectures from the 33rd Probability Summer School held in Saint-Flour, 2003, Edited by Jean Picard. MR2071629

[56]   Funaki, T. and Spohn, H. (1997). Motion by mean curvature from the Ginzburg-Landau φ interface model. Comm. Math. Phys. 185, 1, 1–36. MR1463032

[57]   Geoffroy, J.-R. (2005). In preparation.

[58]   Georgii, H.-O. (1988). Gibbs measures and phase transitions. de Gruyter Studies in Mathematics, Vol. 9. Walter de Gruyter & Co., Berlin. MR0956646

[59]   Giacomin, G. Private communication.

[60]   Giacomin, G. Aspects of statistical mechanics of random surfaces. Notes of lectures given at IHP, fall 2001; can be downloaded from his homepage.

[61]   Giacomin, G. (2003). On stochastic domination in the Brascamp-Lieb framework. Math. Proc. Cambridge Philos. Soc. 134, 3, 507–514. MR1981215

[62]   Giacomin, G. (2006). Random Polymer Models. Imperial College

Home | Current | Past volumes | About | Login | Notify | Contact | Search

Probability Surveys. ISSN: 1549-5787