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A variety of problems in computing, service, and manufacturing
systems can be modeled via infinite repeating Markov chains with
an infinite number of levels and a finite number of phases. Many
such chains are quasi-birth-death processes with transitions that are
skip-free in level, in that one can only transition between consecutive
levels, and unidirectional in phase, in that one can only transition
from lower-numbered phases to higher-numbered phases. We present
a procedure, which we call Clearing Analysis on Phases (CAP), for
determining the limiting probabilities of such Markov chains exactly.
The CAP method yields the limiting probability of each state in the
repeating portion of the chain as a linear combination of scalar bases
raised to a power corresponding to the level of the state. The weights
in these linear combinations can be determined by solving a finite
system of linear equations.

1. Introduction. Markov chains are frequently used to model and ana-
lyze queueing systems, especially those systems that operate at intermediate
load. A particularly rich class of infinite repeating Markov chains that are
used to model a variety of management problems arising in computing, ser-
vice, and manufacturing systems are known as quasi-birth-death (QBD) pro-
cesses. Unfortunately, despite the modeling power of QBD processes (here-
after, QBD chains), it is often difficult to find exact solutions for their
limiting probability distributions.

In this paper, we introduce and analyze a large subclass of QBD chains,
which we call class M (defined in Section 2). Chains in this class, which
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we call class-M chains, are most appropriate for modeling queueing sys-
tems where certain queueing parameters (such as arrival rates, service rates,
the number of operating servers, etc.) change over time according to a re-
stricted stochastic pattern. These changes can be a result of uncontrollable
outside factors, policies implemented by the system’s manager, or a com-
bination of the two. For example, in [10, 11] a class-M chain is used to
study power management in data centers. The class-M chains in these pa-
pers model data centers where servers are turned on as they are needed and
put into a sleep state—and eventually turned off—when there are no more
jobs waiting in the queue. As servers are turned on, the number of operat-
ing servers increases, while this number decreases as servers are put to sleep
or turned off. We explore this example and two others in greater detail in
Section 3.

Class-M Markov chains have recently appeared in the analytic study of
waiting times in healthcare settings. In [8], class-M chains are used to study
overwork effects, which arise in medical settings where human servers (e.g.,
healthcare providers) initially speed up when there is a lot of work to be
done (e.g., when there is a long queue of patients), and then slow down if the
queue has been long for an extended period of time. Meanwhile, [27] studies
the “slowdown effect” impacting ICU patients—who experience delays upon
arrival—by analyzing Markov chains that fall within class M: see e.g., [5]
for more on the slowdown effect phenomenon.

The primary contribution of this paper is our solution method, Clearing
Analysis on Phases (CAP), which allows for determining the exact limiting
probability distribution (i.e., the exact stationary distribution) of any class-
M chain. While chains in some subsets of class M could be solved analyti-
cally, previously proposed methods for determining the limiting probability
distribution of many class-M chains were restricted to numerical solutions.
Moreover, the exact solution provided by the CAP method is in a linear
combination form that is extremely convenient for the calculation of perfor-
mance metrics such as the mean and variance of the queue length. Therefore,
the CAP method is a novel tool that practitioners can employ to evaluate
performance metrics for a variety of queueing systems. These evaluations
can then be used to make informed managerial decisions with regards to
admission control, staffing, and availability.

Our methodological contribution hinges on viewing class-MMarkov chains
as being composed of sequentially connected clearing models. Formally de-
fined in Section 5.4, clearing models resemble ordinary M/M/1 queueing
models, except that they allow for clearing events where the entire queue can
be emptied at once, regardless of the current queue length. The CAP method
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treats changes in the system parameters of a queueing system—which can
occur at any queue length—as being roughly analogous to clearing events in
clearing models. This approach complements existing frameworks used in the
analysis of QBD chains by providing an alternative way of conceptualizing
the stochastic evolution of these chains.

2. The model. We consider a class, M, of ergodic continuous time
Markov chains (ergodic CTMCs), which we call class-M Markov chains (or
simply “class-M chains”), with a countably infinite state space E and a
transition rate matrix Q ≡ [q(x, y)]x,y∈E (see Fig. 1 and Fig. 2). The infinite
state space can be decomposed as E = R∪N , where R represents what we
call the infinite repeating portion of the chain and N represents the finite
nonrepeating portion of the chain.

The repeating portion of a class-M chain is given by

R ≡ {(m, j) : 0 ≤ m ≤ M, j ≥ j0}

where both M and j0 are finite nonnegative integers. We refer to a state
(m, j) ∈ R as the state at phase m and level j. For each j ≥ j0, level j is
given by

Lj ≡ {(0, j), (1, j), . . . , (M, j)}.

The portion R is named the repeating portion because the transition rate
structure within R is level-independent (but possibly phase-dependent).
Throughout this paper, we index phases by i, k, m, and u, and we index
levels by j and �.

In a class-M Markov chain, transitions from a state in N to a state in
R and vice versa are only allowed via the states in Lj0 ⊆ R (i.e., if x ∈ N
and (m, j) ∈ R, then the transition rate q(x, (m, j)) = q((m, j), x) = 0
unless j = j0). Other than this restriction, the structure of N is completely
arbitrary. In many contexts where the level, j, corresponds to the number
of jobs present in a queueing system, it is natural to label the states in N
by some subset of—if not all of the elements in—the set

{(m, j) : 0 ≤ m ≤ M, 0 ≤ j ≤ j0 − 1},

where j0 is the first level that the chain begins to exhibit a repeating struc-
ture. However, there exist contexts where the states within N (and the tran-
sitions between them) are completely arbitrary and need not be described
by a phase and/or level (see the example given in Section 3.2). Throughout
this paper, we index states in N in an arbitrary fashion, e.g., {x}x∈N or
{y}y∈N .
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Fig 1. The structure of class-M Markov chains. In this case j0 = 0 and, for simplicity,
αm〈i−m;±1〉 = 0. The chain is made up of a non-repeating portion, N (shown here as an
aggregation of states), and a repeating portion, R. Within R, each phase, m, corresponds
to a “row” of states, and each level, j, corresponds to a “column” of states. Transitions
between levels in each phase of the repeating portion, R, are skip-free: all such transitions
move only one step to the “left” or “right.” Transitions between phases in each level of R
are unidirectional: all such transitions move “downward.” The thicker arrows denote sets
of transitions (transitions rates for these sets are omitted from the figure).

Transitions between two states in R are restricted to the following: (i)
transitions between states in the same phase, m (e.g., the “horizontal” tran-
sitions in Fig. 1 and Fig. 2), which exist only between consecutive levels,
with the rates

λm ≡ q((m, j), (m, j + 1)) (0 ≤ m ≤ M, j ≥ j0) and

μm ≡ q((m, j), (m, j − 1)) (0 ≤ m ≤ M, j ≥ j0 + 1),
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Fig 2. Another more detailed look at the transition structure of class-M Markov chains. For
simplicity, only the set of transitions that are possible from state (m, j) (where j ≥ j0+1)
to states in phases m, m+ 1, and m+ 2 are shown. Note that all transitions from (m, j)
are either to the left, to the right, or downward. Furthermore, all transitions can decrease
or increase the level by at most one.

and (ii) transitions across phases, from phase m to a state in another phase
(e.g., the “vertical” transitions in Fig. 1 and the “vertical” and “diagonal”
transitions in Fig. 2). For a transition of the latter type, say between state
(m, j) and state (m+Δ1, j+Δ2), the transition rate is given by αm〈Δ1; Δ2〉,
where Δ1 ≥ 1 is the increase in phase from m to m+Δ1 (i.e., the “vertical”
shift) and Δ2 ∈ {−1, 0, 1} is the change in level, if any, from j to j+Δ2 (i.e.,
the “horizontal” shift). Note that Δ1 ≥ 1 indicates that only transitions to
higher-numbered phases are allowed, while Δ2 ∈ {−1, 0, 1} indicates that
each transition may change the level by at most 1 in either direction. More
specifically, these transitions are described as follows:

αm〈i−m;−1〉 ≡ q((m, j), (i, j − 1)) (0 ≤ m < i ≤ M, j ≥ j0 + 1)

αm〈i−m; 0〉 ≡ q((m, j), (i, j)) (0 ≤ m < i ≤ M, j ≥ j0)

αm〈i−m; 1〉 ≡ q((m, j), (i, j + 1)) (0 ≤ m < i ≤ M, j ≥ j0).

We will also use the shorthand notation

αm =

M∑
i=m+1

(αm〈i−m;−1〉+ αm〈i−m; 0〉+ αm〈i−m; 1〉)
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throughout the paper to represent the total outgoing transition rate to other
phases from states in phase m with level j ≥ j0 + 1.

Markov chains in class-M are examples of quasi-birth-death (QBD) pro-
cesses, with increments and decrements in level corresponding to “births”
and “deaths,” respectively. We say that transitions in class-M chains are
skip-free in level, in that the chain does not allow for the level to increase
or decrease by more than 1 in a single transition. We also say that transi-
tions in class-M chains are unidirectional in phase, in that transitions may
only be made to states having either the same phase or a higher-numbered
phase in the repeating portion. Note however that phases may be skipped:
for example, transitions from a state in phase 2 to a state in phase 5 may
exist with nonzero rate.

Many common queueing systems arising in computing, service, and man-
ufacturing systems can be modeled with CTMCs from class M (a few exam-
ples are given in Section 3). For such systems, one often needs to track both
the number of jobs in the system and the state of the server(s), where each
server may be in one of several states, e.g., working, fatigued, on vacation,
etc. When modeling a system with a class-M Markov chain, we often use
the level, j, of a state (m, j) to track the number of jobs in the system, and
we use the phase, m, to track the state of the server(s) and/or the arrival
process. For example, a change in phase could correspond to (i) a policy
modification that results in admitting more customers, as captured by an
increase in “arrival rate” from λm to λi, where λi > λm or (ii) a change in
the state of the servers leading to an increase or decrease in the service rate
from μm to μi.

3. Examples of class-M Markov chains. In this section we provide
several illustrative examples of queueing systems, and we model these sys-
tems as class-M Markov chains. In each example we will use the phase,
m ∈ {0, 1, . . . ,M}, to track the “state” of the server(s) and/or the arrival
process, and the level, j, to track the number of jobs in the system.

3.1. Single server in different power states. Consider a computer server
that can be in one of three different power states: on, off, or sleep. In the
on state, the server is fully powered and jobs are processed at rate μ.
In the off state, the server consumes no power, but jobs cannot be pro-
cessed. When the server is idle, it is desirable to switch to the off state in
order to conserve power, however there is a long setup time, distributed
Exponential(γ), needed to turn the server back on when work arrives. Be-
cause of this setup time, it is common to switch to a state called the sleep
state, where the server consumes less power than the on state, but where



426 S. DOROUDI, B. FRALIX, AND M. HARCHOL-BALTER

Fig 3. The Markov chain for a single server in different power states. State (m, j) indicates
that the server is in state m (0=off, 1=sleep, 2=on) with j jobs in the system.

there is a shorter setup time, distributed Exponential(δ), for turning the
server on. It is also common to purposefully impose a waiting period, dis-
tributed Exponential(β), in powering down a server (from on to sleep, and
again from sleep to off) once it is idle, which is useful just in case new jobs
arrive soon after the server becomes idle. See [12] for more details.

Fig. 3 depicts a class-M chain representing this setting. This is a class-M
chain with M +1 = 3 phases: off (m = 0), sleep (m = 1), and on (m = 2).
For this chain, j0 = 1 and the non-repeating portion of the state space is
N = {(0, 0), (1, 0), (2, 0)}, while λ0 = λ1 = λ2 = λ, μ0 = μ1 = 0, μ2 = μ,
α0〈2; 0〉 = γ, and α1〈1; 0〉 = δ > γ (all other αm〈i−m; Δ〉 transition rates
are zero).

The system becomes much more interesting when there are multiple
servers, where each can be in one of the above 3 states. In the case of 2
servers, there will be 6 phases, corresponding to: (off,off), (off,sleep), (off,on),
(sleep,sleep), (sleep,on), and (on,on). Note than in this case, phase transi-
tions will include transitions with rates 2γ, γ + δ, and 2δ, as both servers
may be attempting to turn on at the same time. In general, a system with
a servers and b server states will have

(
a+b−1

a

)
phases.

3.2. Server fatigue. Consider a human server who starts her shift full of
energy and works quickly (at rate μF ). As time passes and fatigue sets in, she
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Fig 4. The Markov chain for a server susceptible to fatigue. State (m, j) indicates server
state m (0=full speed, 1=reduced speed, 2=slow speed) with j customers in the system.
The states paper and replace indicate that the server is completing her paper work and
that she is waiting for her replacement, respectively.

becomes progressively slower (first she slows down to a reduced rate μR and
eventually to a very slow rate μS , where μS < μR < μF ). At some point it
makes sense to replace her with a fresh human server. However, before we can
do that, she needs to finish serving her queue of existing customers, if any,
while no longer accepting further arrivals and she needs to complete some
paperwork. Once she has finished serving her queue (or her queue was empty
at the time in which she slowed down to rate μS) she spends an amount of
time that is distributed Exponential(βpap) on paperwork (independent of
anything that happened during her shift). Upon completing her paperwork,
she calls in her replacement, who comes in and begins working after an
amount of time that is distributed Exponential(βrep).

Fig. 4 depicts a class-M chain representing this setting. This is a class-
M chain with M + 1 = 3 phases: full speed (m = 0), reduced speed
(m = 1), and slow speed (m = 2). For this chain, j0 = 1 and the non-
repeating portion of the state space is

N = {(0, 0), (1, 0),paper, replace}

where the states paper and replace represent the times when the server
is completing her paperwork and when she is waiting for her replacement,
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Fig 5. The Markov chain for a server vulnerable to viruses. State (m, j) indicates server
state m (0=uninfected, 1=undetected infection, 2=detected infection) with j jobs in the
system.

respectively. The rates in this chain are given by λ0 = λ1 = λ, λ2 = 0,
μ0 = μF , μ1 = μR < μF , μ2 = μS < μR, α0〈1; 0〉 = γ and α1〈1; 0〉 = δ (all
other αm〈i−m; Δ〉 transition rates are zero).

While we could have easily called the state paper state (2, 0), the state
replace avoids such a natural phase-and-level classification. This is not a
problem as the states in non-repeating portion of the chain need not have
phases and levels.

Again, the system becomes much more interesting when there are multiple
servers, where each can be in one of the 3 speed states.

3.3. Server with virus infections. Imagine a computer server that is vul-
nerable to viruses. We present a stylized model where normally, the server
is uninfected and receives jobs with rate λ and processes them with rate
μ. While most jobs are normal (i.e., not virus carriers), arriving at rate
λN , every once in a while, one of the arriving jobs brings with it a virus,
with rate λV = λ − λN . The virus causes the server to become infected,
reducing the server’s service rate from μ to μI . It takes a duration of time
distributed Exponential(γ) for the server to detect that it is infected. Once
the infection is detected, the server stops accepting new jobs, and once all
remaining jobs are processed, the server is able to use antivirus software to
remove the virus in a duration of time distributed Exponential(β). Once the
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virus is removed, the server is again uninfected and will resume accepting
jobs, processing them at a restored service rate of μ. We model a single
server as being in one of 3 states, each of which will make up a phase of our
Markov chain: uninfected (m = 0), undetected infection (m = 1), and
detected infection (m = 2).

Fig. 5 depicts a class-M chain representing this setting. For this chain,
M = 2, j0 = 1, N = {(0, 0), (1, 0), (2, 0)}, λ0 = λN , λ1 = λ = λN + λV ,
λ2 = 0, μ0 = μ, μ1 = μ2 = μI , α0〈1; 1〉 = λV , and α1〈1; 0〉 = 0 (all other
αm〈i−m; Δ〉 transition rates are zero).

4. Literature review. In this section we review the literature on meth-
ods for solving QBD Markov chains.

4.1. Matrix-geometric methods. One of the most common methods used
to study the stationary distribution of class-M Markov chains and other
QBD chains is the matrix-geometric approach (and more broadly, the matrix-
analytic approach). Given a QBD chain, this approach is primarily concerned
with determining a matrix, R ∈ R(M+1)×(M+1), that allows for the straight-
forward computation of the chain’s limiting probability distribution. This
matrix, R, is referred to as the chain’s rate matrix and will be discussed
in greater detail in Sections 5.2 and 5.3 (for a formal definition of the rate
matrix, see [22]).

For most QBD chains, one cannot derive an exact expression for each
element of R, but there are many ways to approximate R numerically: see
e.g., [17, 4]. Arguably the most popular way of approximating R involves
making use of an iterative scheme derived from the fact thatR is the minimal
nonnegative solution of a fixed-point equation. Another approach involves
approximating R by instead using a similar iterative scheme to approximate
a matrix G: once G has been found, R can in principle be computed as well.
Readers interested in further details on these approaches should consult the
matrix-analytic texts of Neuts [22], Latouche and Ramaswami [18], and He
[14]. Queueing textbooks of a broader scope that also discuss matrix-analytic
methods include Asmussen [3] and Harchol-Balter [13].

There are many examples of QBD chains with a rate matrix, R, that can
be computed exactly through a finite number of operations. One class of
QBD chains having closed-form rate matrices is presented in Ramaswami
and Latouche [24], with an extension to Markov chains of GI/M/1-type
given in Liu and Zhao [20]. Other classes of QBD chains having explicitly
computable rate matrices are considered in the work of van Leeuwaarden
and Winands [33] and van Leeuwaarden et al. [32], with both of these stud-
ies being much closer to our work, since most (but not all) of the types
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of Markov chains studied in [33], and all of the chains discussed in [32]
belong to class M. In [33, 32] combinatorial techniques are used to derive
expressions for each element of R that can be computed exactly after a
finite number of operations. However, their methods are not directly ap-
plicable to all class-M Markov chains as they further assume that (i) for
each 0 ≤ m ≤ M − 1, any transitions leaving phase m must next enter
phase m + 1 (i.e., both level and phase transitions must be skip-free) and
that (ii) λm and μm are the same for 0 ≤ m ≤ M − 1. These assumptions
preclude the analysis of many chains that arise in practice. For example,
assumption (i) rules out the “single server in different power states” class-M
chain from Section 3.1, while assumption (ii) rules out the “server fatigue”
and “server with virus infections” class-M chains from Sections 3.2 and 3.3,
respectively.

The CAP method avoids the task of finding R, in that it provides a way
of expressing all probabilities {πx}x∈R explicitly in terms of the probabili-
ties {πx}x∈N and additional weighting terms {cm,k}m,k that will be further
discussed in Section 5. These remaining terms are then shown to satisfy a
finite system of linear equations that can be solved either symbolically or
numerically.

4.2. The matrix-geometric method applied to tree-like QBD chains. Even
closer to our work is the work of Van Houdt and van Leeuwaarden [31], which
presents an approach for the calculation of the rate matrix for a broad
class of QBD chains including those in class M. This approach involves
solving higher order (scalar) polynomial equations, the solutions to which
are expressed as infinite sums, which typically cannot be computed in closed
form.

The same paper [31] gives an approach for calculating closed-form rate
matrices for a class of Markov chains called tree-like QBD processes (here-
after, tree-like chains). Only some class-M Markov chains are also tree-like
chains. While transitions between phases (within a level) in tree-like chains
form a directed tree, transitions between phases in class-M chains form a
directed acyclic graph. Specifically, unlike class-M chains, tree-like chains do
not allow for a pair of phases i 
= k to both have transitions to the same
phase m. That is, tree-like chains do not allow for both αi〈m− i; Δ〉 > 0
and αk〈m− k; Δ′〉 > 0 when i 
= k and Δ,Δ′ ∈ {−1, 0, 1}).

Instances of class-M chains that are not tree-like chains—and hence can-
not be solved in closed form by [31]—are frequently encountered in the
study of multi-server systems. As an example, consider the “server fatigue”
model presented in Section 3.2 extended to two servers. The phase transi-
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tion structure associated with this two-server system is a non-tree directed
acyclic graph. Observe that we can transition to the (reduced speed, slow
speed) phase directly from one of two phases: (i) a transition from the (full
speed, slow speed) phase to the (reduced speed, slow speed) occurs when
the server operating at full speed experiences fatigue, and (ii) a transition
from the (reduced speed, reduced speed) phase to the (reduced speed, slow
speed) phase occurs when either server experiences fatigue. While the lim-
iting probability distribution of this chain can be found in closed form via
the CAP method, it cannot be found by the method presented in [31].

4.3. Recursive renewal reward. Gandhi et al. [10, 11] use renewal the-
ory to determine exact mean values and z-transforms of various metrics
for a subclass of class-M chains via the Recursive Renewal Reward (RRR)
method. The class of chains they study do not allow for “diagonal” transi-
tions (i.e., αm〈i−m;±1〉 = 0). Unlike our method, RRR cannot be used to
determine a formula for a chain’s limiting probability distribution in finitely
many operations. While there is overlapping intuition and flavor between
CAP and RRR—both methods make use of renewal reward theory—CAP
is not an extension of RRR and does not rely on the results from [10, 11].

4.4. ETAQA. The Efficient Technique for the Analysis of QBD-processes
by Aggregation (ETAQA), first proposed by Ciardo and Simirni [7], com-
bines ideas from matrix-analytic and state aggregation approaches in order
to compute various exact values (e.g., mean queue length) for a wide class
of Markov chains. By design, ETAQA yields the limiting probability of the
states in the non-repeating portion, N , along with the limiting probabilities
of the states in the first level (or first few levels) of the repeating portion, R.
The limiting probabilities of the remaining states (i.e., higher level states)
are aggregated, which allows for the speedy computation of exact mean val-
ues and higher moments of various metrics of interest. In particular, ETAQA
involves solving a system of only O(|N |+M) linear equations. Although orig-
inally applicable to a narrow class of chains (see [7, 6] for details), ETAQA
can be generalized so as to be applicable to M/G/1-type, GI/M/1-type, and
QBD Markov chains, including those in class M (see the work of Riska and
Smirni [25, 26]). Stathopoulos et al. [30] show that ETAQA is also well suited
for numerical computations. Unlike the CAP method, ETAQA (like RRR)
cannot be used to determine a formula for a chain’s limiting probability
distribution (across all states) in finitely many operations.

4.5. Generating function techniques and the spectral expansion method.
For certain class-M Markov chains, one can also manipulate generating func-
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tions to derive limiting probabilities, such as in the work of Levy and Yechiali
[19] and the work of Phung-Duc [23], where this type of approach is used
to solve multi-server vacation and setup models, respectively. This approach
is covered in greater generality in a technical report by Adan and Resing
[2], which is in turn extended in the work of Selen et al. [28] through the
use of separation of variables. We note that although generating function
approaches can yield solutions of a form similar to those found using the
CAP method, the two approaches differ in methodology.

The spectral expansion method presented in the work of Mitrani and
Chakka [21] also yields a solution that is similar to the form obtained by
using generating function techniques or the CAP method. However, unlike
the CAP method, this approach requires explicitly solving an eigenvalue
problem, which could require solving higher order polynomials. Therefore,
while this method is broadly applicable to QBD chains including those in
class M, the method is presented as a numerical technique, rather than
one yielding explicit expressions for the limiting probability distributions of
class-M chains.

5. Analysis and results. In this section we explain how the CAP
method can be used to compute the steady-state distributions of ergodic
(irreducible and positive recurrent) class-M Markov chains. Loosely speak-
ing, the CAP method consists of computing the stationary distribution of a
class-M Markov chain by applying a key result from [18] in an iterative man-
ner that takes advantage of the unidirectional transition structure present
within such chains. We then illustrate the method by deriving the steady-
state distributions of two different types of class M-chains. The calculations
and techniques required to handle these two types of chains can be further
combined to derive the stationary distribution of any other type of class-M
Markov chain.

5.1. A key idea. Consider an ergodic CTMC having a countable state
space S and transition rate matrix Q ≡ [q(x, y)]x,y∈S , where for each x, y ∈
S, x 
= y, q(x, y) denotes the transition rate from state x to state y. These
rates further define, for each state x ∈ S, the sojourn rate νx given by

νx ≡
∑

z∈S\{x}
q(x, z),

which represents the sum of all transition rates out of state x.
We are interested in developing techniques for computing the limiting

distribution π ≡ {πx}x∈S of various types of CTMCs, where for each state
x ∈ S, πx denotes the limiting probability of being in state x. Theorem 1
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Fig 6. For any x ∈ A, Theorem 1 gives πx as a linear combination of quantities Ez

[
TA
x

]
by conditioning on the states y ∈ Ac, by which one may transition to states z ∈ A. This
figure shows one such (y, z) pair.

(Theorem 5.5.1 of [18]) shows that given any nonempty proper subset A of
S, each limiting probability πx, x ∈ A, can be expressed in terms of the
limiting probabilities {πy}y∈Ac , where Ac ≡ S\A denotes the complement
of A.

Theorem 1. Suppose A � S. Then for each state x ∈ A, πx can be
expressed as

πx =
∑
y∈Ac

∑
z∈A

πyq(y, z)Ez

[
TA
x

]
,

where Ez

[
TA
x

]
denotes the expected cumulative amount of time the chain

spends in state x before leaving A, given the chain starts in state z ∈ A.

Proof. See Theorem 5.5.1 of [18].

Intuitively, for each x ∈ A, Theorem 1 allows us to express πx as a
weighted average of the cumulative time spent in state x during an ex-
cursion of the CTMC in the set A, Ez

[
TA
x

]
, conditioned on the choice of

state, z ∈ A, by which we enter A. The weights in this average represent
the rate at which visits to A via z occur, which involves conditioning on the
states y ∈ Ac by which one may transition to z ∈ A. We illustrate S, A, y,
z, and x in Fig. 6.

5.2. A prior approach: The matrix-geometric method. We provide some
short background on the existing matrix-geometric method as it will be



434 S. DOROUDI, B. FRALIX, AND M. HARCHOL-BALTER

useful to contrast CAP with this method in the following subsection (Sec-
tion 5.3).

Theorem 1 is used in [18] to show that the limiting probability distri-
bution of a QBD chain has a matrix-geometric structure on the repeating
portion of its state space. The same argument can be used to establish
the matrix-geometric structure satisfied by the stationary distribution of a
class-M Markov chain on its repeating portion, R.

To state this result, we define, for each level � ≥ j0, the vector


π� =
(
π(0,�), π(1,�), . . . , π(M,�)

)
.

Our goal is to show, for each level j ≥ j0 that the vectors 
πj and 
πj+1 are
related via the formula


πj+1 = 
πjR(5.1)

where R ≡ [Ri,m]0≤i,m≤M is referred to as the rate matrix associated with
the chain. Each element of R has a nice probabilistic interpretation: Ri,m

represents ν(i,j0) times the expected amount of time the chain spends in
state (m, j0 + 1) before returning to the set Lj0 ∪N , given the chain starts
at state (i, j0).

We are now ready to establish (5.1). Fix a level j ≥ j0, and define
Aj ≡

⋃∞
�=j+1 L�. Then for each state (m, j + 1) ∈ Lj+1, Theorem 1 yields

π(m,j+1) =
M∑
i=0

M∑
k=0

π(i,j)q((i, j), (k, j + 1))E(k,j+1)

[
T
Aj

(m,j+1)

]

=

M∑
i=0

π(i,j)ν(i,j)

M∑
k=0

(
q((i, j), (k, j + 1))

ν(i,j)

)
E(k,j+1)

[
T
Aj

(m,j+1)

]

=

M∑
i=0

π(i,j)Ri,m.

For most QBD chains, one cannot derive an exact expression for each
element of R, but there are many ways to compute an approximation of R
numerically: see for example [17]. OnceR—or a good approximation forR—
is found, each vector 
πj for j ≥ j0 + 1 can be computed via 
πj = 
πj0R

j−j0 ,
and all remaining limiting probabilities, πx, for x ∈ N ∪ Lj0 , can be found
using the balance equations and the normalization constraint.

5.3. Introducing CAP. The CAP method consists of applying Theorem
1 in a different manner from that used in matrix-geometric methods, in order



CLEARING ANALYSIS ON PHASES 435

to take advantage of the unidirectional transition structure present within
class-M chains. For each integer m ∈ {0, 1, . . . ,M}, define the set Pm as

Pm ≡ {(m, j0 + 1), (m, j0 + 2), (m, j0 + 3), . . .}

which represents the set of states in phase m with level j ≥ j0 + 1 (i.e., the
set of states in phase m of R excluding state (m, j0)). We then repeatedly
apply Theorem 1 using first the set P0, then the set P1, then P2, and we
stop after applying Theorem 1 with the set PM . Applying Theorem 1 with
the set P0 yields, for each state (0, j) ∈ P0,

π(0,j) =
∑
y∈P c

0

∑
z∈P0

πyq(y, z)Ez

[
TP0

(0,j)

]

= π(0,j0)λ0E(0,j0+1)

[
TP0

(0,j)

]
which shows all limiting probabilities π(0,j), j ≥ j0 + 1, can be expressed in
terms of π(0,j0).

Since phase transitions are unidirectional, we now proceed in an inductive
manner: assume we have derived an expression for each π(i,j), 0 ≤ i ≤ m−1,
j ≥ j0. Applying Theorem 1 with the set Pm, 1 ≤ m ≤ M further yields, for
each state (m, j) ∈ Pm,

π(m,j) = π(m,j0)λmE(m,j0+1)

[
TPm

(m,j)

]

+

m−1∑
i=0

∞∑
�=j0+1

1∑
Δ=−1

π(i,�−Δ)αi〈m− i; Δ〉E(m,�)

[
TPm

(m,j)

]
.

The unidirectionality of phase transitions in class-M Markov chains ensures
that the limiting probabilities appearing in the right-hand side of the equa-
tion above are only those associated with phase m and lower-numbered
phases.

A bit of thought shows that each limiting probability π(m,j), for 0 ≤
m ≤ M , j ≥ j0 + 1, can be expressed in terms of the limiting probabilities
{πx}x∈N and {π(m,j0)}0≤m≤M , but to make this observation useful we must

show that each expectation E(m,�)

[
TPm

(m,j)

]
can be computed analytically.

These analytic computations are presented in Theorem 2.

Theorem 2. For any class-M Markov chain, if λm, μm > 0 and
�, j ≥ j0 + 1, we have

E(m,�)

[
TPm

(m,j)

]
=

{
Ωmrj−�

m

(
1− (rmφm(αm))�−j0

)
if � ≤ j

Ωmφm(αm)�−j
(
1− (rmφm(αm))j−j0

)
if � ≥ j,

(5.2)
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where

ρm ≡ λm/μm, rm ≡ ρmφm(αm), Ωm ≡ rm
λm(1− rmφm(αm))

,

and φm(αm) is the Laplace-Stieltjes transform of the length of the busy period
of an M/M/1 queue having arrival rate λm and service rate μm, evaluated
at αm.

Proof. The detailed proof of this result follows from the clearing model
analysis that will be presented in Section 5.4 (see the statement and proof
of Lemma 2 in particular). The key idea is to view the phase Pm as its
own “smaller” Markov chain (in particular an M/M/1 clearing model), and
to analyze the stochastic evolution of that Markov chain. This approach is
valid because we are concerned only with the stochastic evolution of the
class-M chain within Pm, and moreover, all quantities in the statement of
this theorem depend only the properties of the chain at phase m (including
the total outgoing transition rate, αm).

The M + 1 scalars r0, r1, . . . , rM that are given by

rm ≡ ρmφm(αm) =
αm + λm + μm −

√
(αm + λm + μm)2 − 4λmμm

2μm
(5.3)

when μm > 0 and by

rm ≡ λm

λm + αm
(5.4)

otherwise, are referred to throughout as the base terms (or bases) associ-
ated with a class-M Markov chain. These base terms are actually the di-
agonal elements of the rate matrix R. To see why this is the case, define
Cj0+1 =

⋃∞
�=j0+1 L� and observe that for 0 ≤ m ≤ M , it follows from both

the unidirectional transition structure of class-M Markov chains, and the
probabilistic interpretation of each element of R that

Rm,m = λmE(m,j0+1)

[
T

Cj0+1

(m,j0+1)

]
= λmE(m,j0+1)

[
TPm

(m,j0+1)

]
= λm

(
rm
λm

)
= rm.

We can also use this probabilistic interpretation of the elements of R to
show that R is a lower-triangular matrix: given two phases i,m satisfying
0 ≤ m < i ≤ M , unidirectional phase transitions guarantee that one can-
not spend any time in Pm before reaching N , given that one starts in Pi,
establishing that Ri,m = 0.
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What sort of expressions for the limiting probabilities {πx}x∈R does the
CAP method yield? When the base terms r0, r1, . . . , rM are all distinct, we
have for 0 ≤ m ≤ M , j ≥ j0 that

π(m,j) =

m∑
k=0

cm,kr
j−j0
k(5.5)

where {cm,k}0≤k≤m≤M are a doubly-indexed set of coefficients that will be
discussed in further detail later. Furthermore, when the base terms are all
equal, we instead have

π(m,j) =

m∑
k=0

cm,k

(
j − (j0 + 1) + k

k

)
rj−j0
0(5.6)

where again, the doubly-indexed coefficients {cm,k}0≤m≤M,0≤k≤m will be de-
fined in more detail later.

It is not surprising that π(m,j) can be expressed as a linear combination
of scalars, each raised to the power of j− j0, as in Equations (5.5) and (5.6).
Since R is a lower-triangular matrix, its eigenvalues are simply its diagonal
elements, which are also the diagonal elements of the Jordan normal form of
R—see e.g., Chapter 3 of Horn and Johnson [15]—from which we know that
π(m,j) can be expressed as a linear combination of scalars, each raised to the
power of j− j0. Although in theory, our solution form could be recovered by
first computing R and then numerically determining R in Jordan normal
form, such a procedure is often inadvisable. The structure of the Jordan
normal form of a matrix can be extremely sensitive to small changes in
one or more of its elements, particularly when some of its eigenvalues have
algebraic multiplicity larger than one. Fortunately, the CAP method can
handle these cases as well with little additional difficulty: the CAP method
reduces the problem of determining the eigenvectors of R to the problem of
computing the cm,k coefficients, and later we will see that these coefficients
always appear as part of the solution to a well-defined finite linear system
of equations.

5.4. Clearing analysis. In this subsection we define and analyze M/M/1
clearing models in order to prove Theorem 2.

Like the ordinary M/M/1 queueing model, the M/M/1 clearing model (see
Fig. 7) is a CTMC having state space {0, 1, 2, 3, . . .}, where for each state j ≥
0, transitions from state j to state j+1 occur with rate λ, while transitions
from state j to state j−1 occur with rate μ for each j ≥ 2 (transitions from
state 1 to state 0 will be addressed shortly). What distinguishes this chain
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Fig 7. Markov chain for the M/M/1 clearing model. For any state j ≥ 0, clearings occur
with rate α. Note that the transition rate from state 1 to state 0 is μ+α as either a departure
or a clearing can cause this transition. The thicker arrow denotes a set of transitions.

from the ordinary M/M/1 chain is that for each state j ≥ 1, it is possible
to move directly from state j to state 0 due to the occurrence of a clearing
(or catastrophe or disaster). All clearing transitions occur in accordance to
a Poisson process having rate α, which we call the clearing rate. Note that
this chain can move from state 1 to state 0 through either a departure with
rate μ, or a clearing with rate α, so the transition rate from state 1 to state
0 is simply μ+ α.

Why is an understanding of M/M/1 clearing models key to understanding
the behavior of a class-M Markov chain? Whenever a class-M Markov chain
is in the set Pm, 0 ≤ m ≤ M , it behaves like an M/M/1 clearing model
having arrival rate λm, service rate μm, and clearing rate

αm ≡
M∑

i=m+1

1∑
Δ=−1

αm〈i−m; Δ〉,

except now “clearings” correspond to transitions to a state having a higher-
numbered phase. This connection allows us to reformulate the problem of

deriving an expression for E(m,�)

[
TPm

(m,j)

]
in a class-M Markov chain—and

thus the problem of proving Theorem 2—into a problem about clearing
models. Namely, we seek to determine expressions for quantities of the form

E�

[
TA
j

]
for M/M/1 clearing models, where A = {1, 2, 3, . . .} is the set of

nonzero states. In order to derive such expressions, we make use of the
following result adapted from [16].1

1See problems 22 and 23 from Chapter 7 of [16]: these problems actually pertain to
a Brownian motion, but the same technique works when studying the difference of two
homogeneous Poisson processes.



CLEARING ANALYSIS ON PHASES 439

Lemma 1. In an M/M/1 clearing model with arrival, departure, and
clearing rates λ, μ, and α, respectively, the probability that one reaches state
j > 0 before state 0, given that one starts in state � > 0, is given by

p�→j =

⎧⎨
⎩
(ρφ(α))j−�(1− (ρφ(α)2)�)

1− (ρφ(α)2)j
if � ≤ j

φ(α)�−j if � ≥ j,

where ρ = λ/μ and φ(·) is the Laplace-Stieltjes transform of the length of
the busy period of an M/M/1 system: for α > 0,

φ(α) =
α+ λ+ μ−

√
(α+ λ+ μ)2 − 4λμ

2λ
.

We now use Lemma 1 to compute E�

[
TA
j

]
in an M/M/1 clearing model,

where A is the set of nonzero states. This result is presented in Lemma 2.
Moreover, by recasting this lemma in the context of class-M Markov chains,

one readily obtains E(m,�)

[
TPm

(m,j)

]
; that is, Theorem 2 (from Section 5.3)

follows immediately from Lemma 2.

Lemma 2. In an M/M/1 clearing model with arrival, departure, and
clearing rates λ, μ, and α, respectively, if A = {1, 2, 3, . . .} denotes the set
of nonzero states of the state space of the underlying Markov chain, then

E�

[
TA
j

]
=

⎧⎪⎨
⎪⎩
Ω(α)(ρφ(α))j−�

(
1− (ρφ(α)2)�

)
if � ≤ j

Ω(α)φ(α)�−j
(
1− (ρφ(α)2)j

)
if � ≥ j.

where

Ω(α) ≡ ρφ(α)

λ(1− ρφ(α)2)
.

Proof. We first consider the case where � ≤ j. We claim that

E1

[
TA
j

]
= (p1→�)E�

[
TA
j

]
,(5.7)

recalling that p1→� is the probability that one reaches state � before state 0
given initial state 1. Equivalently, in our setting, we may interpret p1→� to be
the probability that one reaches state � before leaving A, given initial state
1, as 0 is the only state not in A. The claim in Equation (5.7) follows from
conditional expectation and the fact that given we start in state 1, we either
(i) reach state � before leaving A, in which case the expected cumulative time



440 S. DOROUDI, B. FRALIX, AND M. HARCHOL-BALTER

spent in state j before leaving A is E�

[
TA
j

]
—note that no time is spent in

j before reaching �, as � ≤ j—or (ii) we do not reach state � before leaving
A, in which case we also do not reach state j, and hence we spend 0 time in
state j before leaving A.

From Lemma 1, we know that for � ≤ j, we have

p�→j =
(ρφ(α))j−�

(
1− (ρφ(α)2)�

)
1− (ρφ(α)2)j

.(5.8)

Hence, in order to determine E�

[
TA
j

]
from Equation (5.7), we need only

determine E1

[
TA
j

]
. We compute this quantity via the renewal reward theo-

rem. Let us earn reward in state j at rate 1, and consider a cycle from state
0 until one returns to 0 again (after leaving 0). We also use the known fact
that the limiting probability of being in state j in an M/M/1 clearing model
is given by (1 − ρφ(α))(ρφ(α))j (see e.g., Corollary 4.2.2 of [1], as well as
Exercise 10.7 of [13]). Hence, by the renewal reward theorem, we have

E1

[
TA
j

]
E[BC ] + 1/λ

= (1− ρφ(α))(ρφ(α))j ,(5.9)

where BC denotes the length of the busy period of an M/M/1 clearing
model. To determine E[BC ], observe that BC = min{B, ζα}, where B is
an independent random variable distributed like the length of the busy pe-
riod of an M/M/1 model without clearing, and ζα ∼ Exponential(α) is an
exponentially distributed clearing time. Taking the expectation, we have

E[BC ] = E[min(B, ζα)] =

∫ ∞

0
P(B > t)P(ζα > t) dt =

∫ ∞

0
P(B > t)e−αt dt

=
1

α

∫ ∞

0
P(B > t)

(
αe−αt

)
dt =

P(B > ζα)

α
=

1− P(B ≤ ζα)

α

=
1− φ(α)

α
,

where the final step follows from an alternate interpretation of the Laplace-
Stieltjes transform (see Appendix A for details), noting that φ(·) is the
Laplace-Stieltjes transform of B.

Returning to Equation (5.9), we find that

E1

[
TA
j

]
=

(
1− φ(α)

α
+

1

λ

)
(1− ρφ(α))(ρφ(α))j =

(ρφ(α))j

λ
,(5.10)



CLEARING ANALYSIS ON PHASES 441

where we make use of the identity(
1− φ(α)

α
+

1

λ

)
(1− ρφ(α)) =

1

λ

in our simplification. This identity can be verified algebraically by using the
explicit form of φ(s). Alternatively, let E0[T0] be the expected duration of
time spent in state 0 in a cycle starting from state 0, and ending with a
return to state 0 from a nonzero state. Then by the renewal reward theo-
rem,

E0[T0] =

(
E[BC ] +

1

λ

)
(1− ρφ(α)) =

(
1− φ(α)

α
+

1

λ

)
(1− ρφ(α)).

We can also observe that during such a cycle, the only time spent in state 0 is
during the initial residence, as a revisit to state 0 ends the cycle, so E0[T0] =
1/λ. Setting these quantities equal to one another yields the claimed identity
directly.

We proceed to use Equation (5.7) in determining E�

[
TA
j

]
(in the case

where 1 ≤ � ≤ j). By substituting in values from Equations (5.8) and (5.10),
while recalling that

Ω(α) ≡ ρφ(α)

λ(1− ρφ(α)2)
,

we have:

E�

[
TA
j

]
=

E1

[
TA
j

]
p1→�

=

(
(ρφ(α))j

λ

) (
1− (ρφ(α)2)�

(ρφ(α))�−1(1− ρφ(α)2)

)

=
(ρφ(α))j−�+1

(
1− (ρφ(α)2)�

)
λ(1− ρφ(α)2)

= Ω(α)(ρφ(α))j−�
(
1− (ρφ(α)2)�

)
Next, we consider the case where � ≥ j (note that the two branches

in the claimed expression coincide when � = j). We again use conditional
expectation, this time obtaining

E�

[
TA
j

]
= (p�→j)Ej

[
TA
j

]
=

(
φ(α)�−j

) (
ρφ(α)(1− (ρφ(α)2)j)

λ(1− ρφ(α)2)

)
= Ω(α)φ(α)�−j

(
1− (ρφ(α)2)j

)
,

which completes the proof of the claim. Note that we have obtained Ej

[
TA
j

]
by substituting � = j into the expression for E�

[
TA
j

]
, which we found for
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� ≤ j, and we have also used the fact from Lemma 1 that p�→j = φ(α)�−j

whenever � ≥ j.

With Lemma 2—and hence Theorem 2—proven, we now turn our at-

tention to using the expression we derived for E(m,�)

[
TPm

(m,j)

]
in order to

determine the exact limiting probability distributions of class-M chains.

5.5. Overview of main results. Our next goal is to derive the limiting
probabilities {πx}x∈R associated with a class-M Markov chain. In Section
5.6, we consider the case where all nonzero bases are distinct. Distinct bases
arise in many models where there is no structure connecting the transition
rates associated with each phase: for example, the class-M Markov chain
representing the “server in different power states” model presented in Section
3.1 has distinct bases. In Section 5.7 we consider the case where all bases
are the same (i.e., r0 = r1 = · · · = rM ), while requiring that λm, μm > 0
for ease of exposition. We study this setting because it is the simplest case
featuring repeated nonzero bases. In principle, the CAP method can be used
to determine the limiting probabilities of any class-M Markov chain, but to
make the paper readable we do not cover other possible cases, since (i)
the expressions become more cumbersome when other possible relationships
between base terms are considered, but fortunately (ii) it will be clear to
readers how the CAP approach can be adjusted to handle any other type of
class-M Markov chain.

5.6. The case where all nonzero bases are distinct. We are now ready to
present our main result for the case where all nonzero bases are distinct.
Theorem 3 expresses the stationary distribution of such class-M Markov
chains as the solution to a finite system of linear equations.

Theorem 3. For any class-M Markov chain such that all nonzero bases
r1, r2, . . . , rM—given in Equations (5.3) and (5.4)—are distinct (i.e., rm 
=
ri implies either m 
= i or rm = λm = 0), for all j ≥ j0, we have a limiting
probability distribution of the form

π(m,j) =
m∑
k=0

cm,kr
j−j0
k ,

where {cm,k}0≤k≤m≤M are constants with respect to j. Moreover, the
{cm,k}0≤k≤m≤M values, together with {π(m,j0)}0≤m≤M and {πx}x∈N , con-
stitute M(M + 5)/2 + |N |+ 2 “unknown variables” satisfying the following
system of M(M + 5)/2 + |N |+ 3 linear equations:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cm,k =

rkrm

⎛
⎝m−1∑

i=k

1∑
Δ=−1

ci,kαi〈m − i; Δ〉r−Δ
k

⎞
⎠

λm(rk − rm)(1 − φm(αm)rk)
(0 ≤ k < m ≤ M : rm, rk > 0)

cm,k =

m−1∑
i=k

1∑
Δ=−1

ci,kαi〈m − i; Δ〉r−Δ
k

μm(1 − rk) + αm
(0 ≤ k < m ≤ M : rk > rm = 0)

cm,k = 0 (0 ≤ k < m ≤ M : rk = 0)

cm,m = π(m,j0) −
m−1∑
k=0

cm,k (0 ≤ m ≤ M)

π(m,j0) =

μm

m∑
k=0

cm,krk +
∑

x∈N
q(x, (m, j0))πx +

m−1∑
i=0

0∑
Δ=−1

αi〈m − i; Δ〉π(i,j0−Δ)

λm +

M∑
i=m+1

1∑
Δ=0

αm〈i − m; Δ〉 +
∑

x∈N
q((m, j0), x)

(0 ≤ m ≤ M)

πx =

M∑
m=0

q((m, j0), x)π(m,j0) +
∑

y∈N
q(y, x)πy

M∑
m=0

q(x, (m, j0)) +
∑

y∈N
q(x, y)

(x ∈ N )

1 =
∑

x∈N
πx +

M∑
m=0

m∑
k=0

cm,k

1 − rk
,

where q(x, y) denotes the transition rate from state x to state y.

We note before proving Theorem 3 that solving this system of equations
symbolically will yield closed-form solutions for the limiting probabilities.
Alternatively, if all parameter values are fixed and known, an exact numer-
ical solution can be found by solving the system numerically using exact
methods. Note that there is one more equation than there are unknowns,
as is often the case in representations of limiting equations through balance
equations. Although one equation can be omitted from the system, the nor-
malization equation must be used in order to guarantee a unique solution.

It is also worth observing that once the values {πx}x∈N and
{π(m,j0)}0≤m≤M are known, all other cm,k terms can be computed recur-
sively, without having to apply Gaussian elimination to the entire linear
system given in Theorem 3.

This recursion may also simplify further for some types of class-M Markov
chains. For example, if αm〈Δ1; Δ2〉 = 0 for all Δ1 ≥ 2, Δ2 ∈ {−1, 0, 1}, and
0 ≤ m ≤ M , then when all bases are positive, for any k < m, we have

cm,k = cm−1,k
rkrm

λm(rk − rm)(1− φm(αm)rk)

1∑
Δ=−1

αm−1〈1;Δ〉r−Δ
k

which further implies, for k < m,

cm,k = ck,k

m−k∏
�=1

rkrk+�

λk+�(rk − rk+�)(1− φk+�(αk+�)rk)

1∑
Δ=−1

αk+�−1〈1;Δ〉r−Δ
k
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meaning that only the {ck,k}0≤k≤M terms need to be computed recursively.

Proof of Theorem 3. For simplicity, we present the proof for the case
where λm, μm > 0 for all phases m ∈ {0, 1, 2, . . . ,M}. The complete proof
that includes the cases where one or both of λm and μm may be 0 for some
phases, m, is given in Appendix B.

We prove the theorem via strong induction on the phase, m. Specifically,
for each phase m, we will show that π(m,j) takes the form

π(m,j) =
∑m

k=0 cm,kr
j−j0
k for all j ≥ j0 + 1 (and also for the special case

j = j0), and show that {cm,k}0≤k≤m−1 satisfies

cm,k =
rkrm

λm(rk − rm)(1− φm(αm)rk)

(
m−1∑
i=k

1∑
Δ=−1

ci,kαi〈m− i; Δ〉r−Δ
k

)

while cm,m = π0−
∑m−1

k=0 cm,k. Finally, after completing the inductive proof,
we justify that the remaining linear equations in the proposed system are
ordinary balance equations together with the normalization constraint.

Base case:

We begin our strong induction by verifying that the claim holds for the
base case (i.e., for m = 0). In this case, Equation (5.2) yields

E(0,j0+1)

[
TP0

(0,j)

]
= Ω0r

j−j0−1
0 (1− r0φ0(α0)) =

rj−j0
0

λ0
.

We can now apply Theorem 1, yielding

π(0,j) = π(0,j0)λ0E(0,j0+1)

[
TP0

(0,j)

]
= π(0,j0)λ0

(
rj−j0
0

λ0

)
= c0,0r

j−j0
0 ,

where c0,0 = π(0,j0). Hence, π(0,j) takes the claimed form. Moreover, c0,0

satisfies the claimed constraint as c0,0 = π(0,j0) −
∑m−1

k=0 cm,k = π(0,j0) − 0 =
π(0,j0), because the sum is empty when m = 0. Note that when m = 0,
{cm,k}0≤k<m≤M is empty, and hence, there are no constraints on these values
that require verification.

Helpful computations:

Before proceeding to the inductive step, we compute two useful expres-

sions: First, we have λmE(m,j0+1)

[
TPm

(m,j)

]
= rj−j0

m , which follows from ap-

plying Equation (5.2). Next, we have

∞∑
�=j0+1

r�−j0
k E(m,�)

[
TPm

(m,j)

]
=

rkrm(rj−j0
k − rj−j0

m )

λm(rk − rm)(1− φm(αm)rk)
,
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which follows from well-known geometric sum identities. Note that this ex-
pression is well-defined because rk 
= rm by assumption and φm(αm)rk < 1.

Inductive step:

Next, we proceed to the inductive step and assume the induction hypoth-
esis holds for all phases i ∈ {0, 1, . . . ,m− 1}. In particular, we assume that

π(i,j) =
∑i

k=0 ci,kr
j−j0
k for all i < m. Applying Theorem 1, the induction

hypothesis, and our computations above, we have2

π(m,j)

= π(m,j0)λmE(m,j0+1)

[
TPm
(m,j)

]
+

m−1∑
i=0

∞∑
�=j0+1

1∑
Δ=−1

π(i,�−Δ)αi〈m− i; Δ〉E(m,�)

[
TPm
(m,j)

]

= π(m,j0)r
j−j0
m +

m−1∑
i=0

∞∑
�=j0+1

1∑
Δ=−1

αi〈m− i; Δ〉
(

i∑
k=0

ci,kr
�−j0−Δ
k E(m,�)

[
TPm
(m,j)

])

= π(m,j0)r
j−j0
m +

m−1∑
k=0

m−1∑
i=k

⎛
⎝ci,k

1∑
Δ=−1

αi〈m− i; Δ〉r−Δ
k

⎞
⎠

⎛
⎝ ∞∑

�=j0+1

r�−j0
k E(m,�)

[
TPm
(m,j)

]⎞
⎠

= π(m,j0)r
j−j0
m +

m−1∑
k=0

m−1∑
i=k

⎛
⎝ci,k

1∑
Δ=−1

αi〈m− i; Δ〉r−Δ
k

⎞
⎠ (

rkrm(rj−j0
k − rj−j0

m )

λm(rk − rm)(1− φm(αm)rk)

)

=

m∑
k=0

cm,kr
j−j0
k ,

where we have collected terms with

cm,k =

rkrm

(
m−1∑
i=k

1∑
Δ=−1

ci,kαi〈m− i; Δ〉r−Δ
k

)

λm(rk − rm)(1− φm(αm)rk)
(0 ≤ k < m ≤ M)

and cm,m = π(m,j0) −
∑m−1

k=0 cm,k, as claimed. This completes the inductive
step and the proof by induction.

The balance equations and normalization constraint:

The equations with π(m,j0) and πx in their left-hand sides in our proposed
system are ordinary balance equations (that have been normalized so that
there are no coefficients on the left-hand side).

It remains to verify the normalization constraint:

1 =
∑
x∈N

πx +

M∑
m=0

π(m,j0) +

M∑
m=0

∞∑
j=j0+1

π(m,j)

2 Note that we have also used the fact that π(i,j0) also satisfies the claimed form for all

i < m, which is true as ci,i = π(i,j0) −
∑i−1

k=0 ci,k (from the inductive hypothesis) implies

that π(i,j0) =
∑i

k=0 ci,k =
∑i

k=0 ci,kr
0
k.
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=
∑
x∈N

πx +
M∑

m=0

M∑
k=0

cm,k +
M∑

m=0

m−1∑
k=0

∞∑
j=j0+1

cm,kr
j−j0
k

=
∑
x∈N

πx +
M∑

m=0

m∑
k=0

cm,krk
1− rk

.

5.7. The case where all bases agree. The CAP method can also be used
in cases where some of the base terms coincide. We assume, for the sake
of readability, that λm and μm are both positive for each phase m, but
analogous results can still be derived when this is no longer the case.

Theorem 4. For a class-M Markov chain satisfying λm, μm > 0 for
0 ≤ m ≤ M , and r0 = r1 = · · · = rM , we have for each level j ≥ j0 and
each phase m that

π(m,j) =

m∑
k=0

cm,k

(
j − (j0 + 1) + k

k

)
rj−j0
0

where the {cm,k}0≤k≤m≤M values satisfy the system of linear equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cm,0 = π(m,j0), (0 ≤ m ≤ M)

cm,k = Ωmr0

m−1∑
u=k

m−1∑
i=u

ci,u

[
1∑

Δ=−1

αi〈m− i; Δ〉φm(αm)Δ+1

(1− r0φm(αm))u+1−k

]

− 1

λm

m−1∑
i=k

ci,kαi〈m− i; 1〉

+Ωm

m−1∑
i=k−1

ci,k−1

[
1∑

Δ=−1

αi〈m− i; Δ〉r−Δ
0

]
(1 ≤ k ≤ m− 1)

cm,m = cm−1,m−1Ωm

1∑
Δ=−1

αm−1〈1;Δ〉r−Δ
0 (1 ≤ m ≤ M),

together with the usual balance equations and normalization constraint.

Theorem 4 can be established with an induction argument, while making
use of the following three identities which hold for class-M Markov chains
where λm, μm > 0, r0 = r1 = · · · = rM , u ≥ 0, and j ≥ j0 + 1:

•
∞∑

�=j0+2

(
�− (j0 + 1) + u

u

)
r�−j0
0 E(m,�−1)

[
TPm

(m,j)

]



CLEARING ANALYSIS ON PHASES 447

=
u+1∑
k=1

Ωmr0
(1− r0φm(αm))u+1−k

(
j − (j0 + 1) + k

k

)
rj−j0
0 ,

•
∞∑

�=j0+1

(
�− (j0 + 1) + u

u

)
r�−j0
0 E(m,�)

[
TPm

(m,j)

]

= Ωm

(
j − (j0 + 1) + u+ 1

u+ 1

)
rj−j0
0

+

u∑
k=1

Ωmr0φm(αm)

(1− r0φm(αm))u+1−k

(
j − (j0 + 1) + k

k

)
rj−j0
0 ,

•
∞∑

�=j0+1

(
�− (j0 + 1) + u

u

)
r�−j0
0 E(m,�+1)

[
TPm

(m,j)

]

=
Ωm

r0

(
j − (j0 + 1) + u+ 1

u+ 1

)
rj−j0
0 −

(
j − (j0 + 1) + u

u

)
rj−j0
0

λm

+

u∑
k=1

Ωmr0φm(αm)2

(1− r0φm(αm))u+1−k

(
j − (j0 + 1) + k

k

)
rj−j0
0 .

Each of these identities can be derived by using the negative binomial
lemmas presented in Appendix C of [9].

6. Extending the scope of the CAP Method. In this section we
briefly touch upon ways in which the CAP method can be extended beyond
class-M Markov chains.

6.1. Chains with “catastrophes”. Recall that the M/M/1 clearing model
is used to model a system where there can be a catastrophe from any nonzero
state causing an immediate transition to state 0. Similarly, we can consider
a modification of a class-M Markov chain where from any state (m, j) with
j ≥ j0 + 1, a catastrophe can occur taking one to state x ∈ N with rate
αm〈x〉 ≡ q((m, j), x).3 That is, each phase can have several catastrophe
rates, one for each state in the non-repeating portion. In this case, it will be
useful to redefine αm as follows:

αm ≡
∑
x∈N

αm〈x〉+
M∑

i=m+1

1∑
Δ=−1

αm〈i−m; Δ〉.

3Whether or not catastrophes can also occur in states (m, j0) will not change the
analysis as arbitrary transitions from states (m, j0) to states x ∈ N are already allowed
in class-M Markov chains.
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The CAP method can easily be modified to give limiting probabilities for
these types of Markov chains.

6.2. Skipping levels when transitioning between phases. Although the as-
sumption that transitions from state (m, j) to state (m, �) can only occur
only if � = j ± 1 is essential to the CAP method, the assumption that
transitions from state (m, j) to state (i, �) (where i > m) can only oc-
cur if � = j ± 1 is much less important. That is, the CAP method may
be extended to allow for nonzero transition rates of the form αm〈Δ1; Δ2〉
with d ≤ Δ2 ≤ D for some d,D ∈ Z. However, it is advisable to treat
the levels Lj0 , Lj0+1, . . . , Lj0+max{|d|,|D|}−1 as special cases, just as Lj0 was
treated as a special case in the analysis presented throughout this pa-
per.

6.3. Chains with an infinite number of phases. Consider a chain with
the structure of a class-M chain, except with infinitely many phases (i.e.,
m ∈ {0, 1, 2, . . .}), and a possibly infinite non-repeating portion, N . The
CAP method may be used to determine the {cm,k}0≤k≤m values in terms
of {πx}x∈N for the first K phases by solving a system of at most O(K2)
equations. This is because the CAP method provides recurrences such that
each {cm,k}0≤k≤m value can be expressed in terms of {ci,k}0≤k≤i≤m−1 val-
ues; that is, only information about lower-numbered phases (and the non-
repeating portion) is needed to compute each cm,k. We can first express
such values for phase m = 0, then phase m = 1, and so on. Once these
values—along with the easily determined corresponding base terms—have
been obtained, we can use the CAP method to find the limiting probabil-
ities for all states in the first K phases as long as we know the {πx}x∈N
values.

Such a procedure is typically not useful, as the {πx}x∈N values are usually
determined via the normalization constraint, which requires expressing lim-
iting probabilities, π(m,j), in terms of {πx}x∈N for all phases, rather than
for only the first K phases. However, there are settings where sufficient
information about the structure of {πx}x∈N may be obtained via other an-
alytic approaches, allowing for the CAP method to compute the limiting
probability of the first K phases (where K can be as high as desired, sub-
ject to computational constraints). For example, a two-class priority queue
can be modeled by an infinite phase variant of a class-M Markov chain.
In that setting, queueing-theoretic analysis provides sufficient information
about the structure of the limiting probabilities in the non-repeating por-
tion (see [29]), making the CAP method an appropriate tool for that prob-
lem.
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7. Conclusion. This paper presents a study of the stationary distri-
bution of quasi-birth-death (QBD) continuous time Markov chains in class
M. class-M Markov chains are ergodic chains consisting of a finite nonre-
peating portion and an infinite repeating portion. The repeating portion of
a class-M chain consists of an infinite number of levels and a finite num-
ber of phases. Moreover, transitions in such chains are skip-free in level, in
that one can only transition between consecutive levels, and unidirectional
in phase, in that one can only transition from lower-numbered phases to
higher-numbered phases. Despite these restrictions, class-M Markov chains
are used extensively in modeling computing, service, and manufacturing sys-
tems, as they allow for keeping track of both the number of jobs in a system
(via levels), and the state of the server(s) and/or the arrival process to the
system (via phases).

This paper develops and introduces a novel technique, Clearing Anal-
ysis on Phases (CAP), for determining the limiting probabilities of
class-M chains exactly. This method proceeds iteratively among the phases,
by first determining the form of the limiting probabilities of the states in
phase 0, then proceeding to do the same for the states in phase 1, and
so on. As suggested by its name, the CAP method uses clearing model
analysis to determine the structure of the limiting probabilities in each
phase.

Unlike most existing techniques for solving for the limiting probability dis-
tribution of QBD chains, which rely upon the matrix-geometric approach,
the CAP method avoids the task of finding the complete rate matrix, R,
entirely. Instead, the CAP method yields the limiting probabilities of each
state, (m, j), in the repeating portion of the Markov chain as a linear com-
bination of scalar base terms (with weights dependent on the phase, m),
each raised to a power corresponding to the level, j. These base terms turn
out to be the diagonal elements of the rate matrix, R. The weights of these
linear combinations can be determined by solving a finite system of lin-
ear equations. We also observe that the structure of the weights of these
linear combinations can depend on the multiplicity structure of the base
terms.

The CAP method can be applied to Markov chains beyond those in class
M, as discussed in Section 6. For example, the CAP method can be used to
determine limiting probabilities in chains where one or more phases allow for
immediate “catastrophe” transitions to states in the non-repeating portion.
As another example, the CAP method can also be applied to Markov chains
where transitions between phases can be accompanied with a change in level
exceeding 1. The CAP method can also be used to study some chains with
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an infinite number of phases. There is ample room for future work to extend
the CAP method in a variety of directions.

The CAP method and the solution form it provides offer several im-
pactful advantages. First, while many existing methods for determining
the limiting probabilities of QBD chains exploit the relationship between
successive levels, the CAP method exploits the relationship between suc-
cessive phases, thereby offering complementary probabilistic intuition on
the structure and steady-state behavior of class-M Markov chains. This
method also provides an additional tool for practitioners who are study-
ing systems that can be modeled by class-M chains. Depending on the ap-
plication domain, the scalar solution form of the CAP method may have
advantages over other solution forms for computing certain metrics of in-
terest (e.g., mean values, higher moments, tail probabilities, etc.). While
this paper does not cover using the solution of the CAP method to derive
metrics of interest, as such metrics are often application specific, we hope
that future work can find novel uses for the CAP method in a variety of
settings.

APPENDIX A: AN ALTERNATIVE INTERPRETATION OF THE
LAPLACE-STIELTJES TRANSFORM

Let X be a nonnegative random variable, with well-defined Laplace-
Stieltjes transform ψ(·) (i.e., ψ is defined on all positive reals), cumula-
tive distribution function, FX(·), and probability density function, fX(·);
note that X may have nonzero probability mass at +∞, in which case∫ ∞
0 fX(t) dt < 1 (where we interpret the integral as being evaluated on
{t ∈ R : 0 ≤ t < ∞}). Then for any constant w > 0, we have the following
interpretation of ψ:

ψ(w) =

∫ ∞

0
e−wtfX(t) dt

= e−wtFX(t)
∣∣∞
0

+

∫ ∞

0
FX(t)

(
we−wt

)
dt

= P{X ≤ ζw},

where ζw ∼ Exponential(w) is a random variable independent of X.

APPENDIX B: THE COMPLETE PROOF OF THEOREM 3

Proof. We prove the theorem via strong induction on the phase, m.
Specifically, for each phase m, we will show that π(m,j) takes the form

π(m,j) =
∑m

k=0 cm,kr
j−j0
k for all j ≥ j0 + 1 (and also for the special case

j = j0), and show that {cm,k}0≤k≤m−1 satisfies
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cm,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rkrm
λm(rk − rm)(1− φm(αm)rk)

(
m−1∑
i=k

1∑
Δ=−1

ci,kαi〈m− i; Δ〉r−Δ
k

)
if rm, rk > 0

m−1∑
i=k

1∑
Δ=−1

ci,kαi〈m− i;Δ〉r−Δ
k

μm(1− rk) + αm
if rk > rm =0

0 if rk = 0,

while cm,m = π0−
∑m−1

k=0 cm,k. Finally, after completing the inductive proof,
we justify that the remaining linear equations in the proposed system are
ordinary balance equations together with the normalization constraint.

Base case:

We begin our strong induction by verifying that the claim holds for the
base case (i.e., for m = 0). By the ergodicity requirement on class-M Markov
chains, λ0 > 0, leaving two sub-cases when m = 0: the case where μ0 > 0,
and the case where μ0 = 0. In the first case, where μ0 > 0, Equation (5.2)
yields

E(0,j0+1)

[
TP0

(0,j)

]
= Ω0r

j−j0−1
0 (1− r0φ0(α0)) =

rj−j0
0

λ0
.

Now consider the other sub-case, where μ0 = 0, recalling that in this

case, we have r0 = λ0/(λ0+α0). We calculate E(0,j0+1)

[
TP0

(0,j)

]
for this case,

by noting that transitions within states in P0 cannot decrease the level, as
follows: starting at state (0, j0 + 1), we either never visit state (0, j) before
leaving P0, or we visit state (0, j) exactly once before leaving P0. The latter
occurs with probability(

λ0

λ0 + α0

)j−j0−1

= rj−j0−1
0 ,

in which case, we spend an average of 1/(λ0 + α0) = r0/λ0 units of time in
state (0, j). Hence, we find that

E(0,j0+1)

[
TP0

(0,j)

]
= rj−j0−1

0

(
r0
λ0

)
=

rj0
λ0

,

which coincides with our finding for the case where μ0 > 0.
In both cases, applying Theorem 1 yields

π(0,j) = π(0,j0)λ0E(0,j0+1)

[
TP0

(0,j)

]
= π(0,j0)λ0

(
rj−j0
0

λ0

)
= π(0,j0)r

j−j0
0

= c0,0r
j−j0
0 ,
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where c0,0 = π(0,j0). Hence, π(0,j) takes the claimed form. Moreover, c0,0

satisfies the claimed constraint as c0,0 = π(0,j0) −
∑m−1

k=0 cm,k = π(0,j0) − 0 =
π(0,j0), because the sum is empty when m = 0. Note that when m = 0,
{cm,k}0≤k<m≤M is empty, and hence, there are no constraints on these values
that require verification.

Inductive step:

Next, we proceed to the inductive step and assume the induction hypoth-
esis holds for all phases i ∈ {0, 1, . . . ,m− 1}. In particular, we assume that
π(i,j) =

∑i
k=0 ci,kr

j−j0
k for all i < m. For convenience, we introduce the

notation

Υm,j ≡ λmE(m,j0+1)

[
TPm

(m,j)

]
and Ψm,k,j ≡

∞∑
�=j0+1

r�−j0
k E(m,�)

[
TPm

(m,j)

]
.

Using this notation, we apply Theorem 1 and the induction hypothesis,
which yields4

π(m,j) = π(m,j0)λmE(m,j0+1)

[
TPm
(m,j)

]
+

m−1∑
i=0

∞∑
�=j0+1

1∑
Δ=−1

π(i,�−Δ)αi〈m− i; Δ〉E(m,�)

[
TPm
(m,j)

]

= π(m,j0)Υm,j +

m−1∑
i=0

∞∑
�=j0+1

1∑
Δ=−1

αi〈m− i; Δ〉
(

i∑
k=0

ci,kr
�−j0−Δ
k E(m,�)

[
TPm
(m,j)

])

= π(m,j0)Υm,j +

m−1∑
k=0

m−1∑
i=k

⎛
⎝ci,k

1∑
Δ=−1

αi〈m− i; Δ〉r−Δ
k

⎞
⎠

⎛
⎝ ∞∑

�=j0+1

r�−j0
k E(m,�)

[
TPm
(m,j)

]⎞
⎠

(B.1)

= π(m,j0)Υm,j +

m−1∑
k=0

m−1∑
i=k

⎛
⎝ci,k

1∑
Δ=−1

αi〈m− i; Δ〉r−Δ
k

⎞
⎠ Ψm,k,j .

We proceed to compute Υm,j and Ψm,k,j separately in the following cases:

• Case 1: λm, μm > 0
• Case 2: λm > μm = 0

4 Note that
∑1

Δ=−1 αi〈m− i; Δ〉r−Δ
k is not well-defined when rk = 0, as 0−1 and 00 are

not well-defined. However, this is just a convenient formal manipulation which will remain
true if we assign any real value to

∑1
Δ=−1 αi〈m− i;Δ〉r−Δ

k as Ψm,k,j = 0 in the rk = 0
case, and the “contribution” to the sum by an index k such that rk = 0 is also 0. One can
verify that this is “harmless” by examining such k indices in isolation. Note further that
we have additionally used the fact that π(i,j0) also satisfies the claimed form for all i < m.

This fact is true because ci,i = π(i,j0) −
∑i−1

k=0 ci,k (from the inductive hypothesis) implies

that π(i,j0) =
∑i

k=0 ci,k =
∑i

k=0 ci,kr
0
k, except that values of rk = 0 yield undefined

quantities of the form 00. Once again, this is a convenient formal manipulation that will
not affect our results if we simply assign 00 = 1 in this context.
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• Case 3: μm > λm = 0
• Case 4: μm = λm = 0

Computations for Case 1 (λm, μm > 0):

When λm, μm > 0, Equation (5.2) yields Υm,j = λmE(m,j0+1)

[
TPm

(m,j)

]
=

rj−j0
m . We also find that

Ψm,k,j =
∞∑

�=j0+1

r�−j0
k E(m,�)

[
TPm

(m,j)

]

=

j∑
�=j0+1

r�−j0
k E(m,�)

[
TPm

(m,j)

]
+

∞∑
�=j+1

r�−j0
k E(m,�)

[
TPm

(m,j)

]

= Ωm

⎛
⎝ j∑

�=j0+1

r�−j0
k rj−�

m

(
1− (rmφm(αm))�−j0

)

+

∞∑
�=j+1

r�−j0
k φm(αm)�−j

(
1− (rmφm(αm))j−j0

)⎞⎠
=

rkrm(rj−j0
k − rj−j0

m )

λm(rk − rm)(1− φm(αm)rk)
,

where the last equality follows from well known geometric sum identities.
Note that this expression is well-defined because rk 
= rm by assumption
and φm(αm)rk < 1.

Computations for Case 2 (λm > μm = 0):

When λm > μm = 0, we recall that rm = λm/(λm + αm) and compute

E(m,�)

[
TPm

(m,j)

]
as follows: starting at state (m, �), we either never visit state

(m, j) before leaving Pm, or we visit state (m, j) exactly once before leav-
ing Pm. If � > j, we never visit state (m, j) before leaving Pm (and so

E(m,�)

[
TPm

(m,j)

]
= 0), but if � ≤ j, we visit state (m, j) exactly once before

leaving Pm with probability rj−�
m , and this visit will last an average time of

1/(λm + αm) = rm/λm, yielding

E(m,�)

[
TPm

(m,j)

]
= rj−�

m

(
rm
λm

)
=

rj−�+1
m

λm
.

In particular, Υm,j = λmE(m,j0+1)

[
TPm

(m,j)

]
= rj−j0

m , coinciding with the ex-

pression for Υm,j from Case 1, and furthermore, we have
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Ψm,k,j =
∞∑

�=j0+1

r�−j0
k E(m,�)

[
TPm

(m,j)

]

=

j∑
�=j0+1

r�−j0
k E(m,�)

[
TPm

(m,j)

]
+

∞∑
�=j+1

r�−j0
k E(m,�)

[
TPm

(m,j)

]

=

j∑
�=j0+1

r�−j0
k rj−�+1

m

λm

=
rkrm(rj−j0

k − rj−j0
m )

λm(rk − rm)
=

rkrm(rj−j0
k − rj−j0

m )

λm(rk − rm)(1− φm(αm)rk)
.

which coincides with the expression for Ψm,k,j that we found in Case 1. The
last equality follows by noting that in this case we have φm(s) = 0 for all s,
and hence 1− φm(αm)rk = 1.

Computations for Case 3 (μm > λm = 0):

When μm > λm = 0, we have Υm,j = λmE(m,j0+1)

[
TPm

(m,j)

]
= 0. Next, we

compute E(m,�)

[
TPm

(m,j)

]
as follows: starting at state (m, �), if � < j, we never

visit j before leaving Pm, while if � ≥ j we will visit j exactly once with
probability μ�−j

m /(μm+αm)�−j and this visit will last an average duration of

1/(μm + αm) units of time. Consequently, E(m,�)

[
TPm

(m,j)

]
= 0 in the former

case and

E(m,�)

[
TPm

(m,j)

]
=

μ�−j
m

(μm + αm)�−j+1

in the latter case. Finally, we have

Ψm,k,j =

∞∑
�=j0+1

r�−j0
k E(m,�)

[
TPm

(m,j)

]

=

j−1∑
�=j0+1

r�−j0
k E(m,�)

[
TPm

(m,j)

]
+

∞∑
�=j

r�−j0
k E(m,�)

[
TPm

(m,j)

]

=
∞∑
�=j

r�−j0
k μ�−j

m

(μm + αm)�−j+1
=

rj−j0
k

μm(1− rk) + αm
.

Computations for Case 4 (μm = λm = 0):

When μm = λm = 0, we again have Υm,j = λmE(m,j0+1)

[
TPm

(m,j)

]
= 0, as in

Case 3. Next, we compute E(m,�)

[
TPm

(m,j)

]
as follows: in this case any visit to
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Pm will consist entirely of one visit to the initial state in Pm, as there are no

transitions to other states in the same phase. Hence, E(m,�)

[
TPm

(m,j)

]
= 1/αm

if � = j, and E(m,�)

[
TPm

(m,j)

]
= 0 otherwise. Consequently,

Ψm,k,j =
∞∑

�=j0+1

r�−j0
k E(m,�)

[
TPm

(m,j)

]
= rj−j0

k E(m,j)

[
TPm

(m,j)

]
=

rj−j0
k

αm

=
rj−j0
k

μm(1− rk) + αm
,

which coincides with the expression for Ψm,k,j that we found in Case 3. The
last equality follows by noting that μm = 0, and hence μm(1− rk) = 0.

Completing the inductive step:

We now proceed to substitute the results of our computations into Equa-
tion (B.1). As Υm,j can be given by the same expression for both Case 1
and 2, and the same holds for Ψm,k,j , we consider these two cases together,
and note that they jointly make up the case where rm > 0. For j ≥ j0 + 1,

π(m,j)

= π(m,j0)Υm,j +

m−1∑
k=0

m−1∑
i=k

⎛
⎝ci,k

1∑
Δ=−1

αi〈m− i; Δ〉r−Δ
k

⎞
⎠ Ψm,k,j

= π(m,j0)r
j−j0
m +

m−1∑
k=0

m−1∑
i=k

⎛
⎝ci,k

1∑
Δ=−1

αi〈m− i; Δ〉r−Δ
k

⎞
⎠ (

rkrm(rj−j0
k − rj−j0

m )

λm(rk − rm)(1− φm(αm)rk)

)

=

m∑
k=0

cm,kr
j−j0
k ,

where we have collected terms with

cm,k =

rkrm

(
m−1∑
i=k

1∑
Δ=−1

ci,kαi〈m− i; Δ〉r−Δ
k

)

λm(rk − rm)(1− φm(αm)rk)
(0 ≤ k < m ≤ M : rm, rk > 0)

and cm,k = 0 when rm > rk = 0 and cm,m = π(m,j0) −
∑m−1

k=0 cm,k.
The expressions for Υm,j and Ψm,k,j also coincide across Cases 3 and 4

(although they are distinct from their Case 1 and 2 counterparts), so we
similarly consider these two cases together, noting that they jointly make
up the case where λm = rm = 0:

π(m,j) = π(m,j0)Υm,j +

m−1∑
k=0

m−1∑
i=k

(
ci,k

1∑
Δ=−1

αi〈m− i; Δ〉r−Δ
k

)
Ψm,k,j
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= 0 +
m−1∑
k=0

m−1∑
i=k

(
ci,k

1∑
Δ=−1

αi〈m− i; Δ〉r−Δ
k

) (
rj−j0
k

μm(1− rk) + αm

)

=

m∑
k=0

cm,kr
j−j0
k ,

where we have collected terms with

cm,k =

m−1∑
i=k

1∑
Δ=−1

ci,kαi〈m− i; Δ〉r−Δ
k

μm(1− rk) + αm
(0 ≤ k < m ≤ M : rm, rk > 0)

and cm,k = 0 when rm = rk = 0. Observe that since rm = 0, it appears that
we can allow cm,m to take any real value, so in order to satisfy the induction
hypothesis, we set cm,m = π(m,j0) −

∑m−1
k=0 cm,k in the rm = 0 case as well.

Also note that we have set cm,k = 0 when rk = 0 in both the rm > 0 and
rm = 0 cases. This completes the inductive step and the proof by induction.

The balance equations and normalization constraint:

The equations with π(m,j0) and πx in their left-hand sides in our proposed
system are ordinary balance equations (that have been normalized so that
there are no coefficients on the left-hand side).

It remains to verify the normalization constraint:

1 =
∑
x∈N

πx +

M∑
m=0

π(m,j0) +

M∑
m=0

∞∑
j=j0+1

π(m,j)

=
∑
x∈N

πx +
M∑

m=0

M∑
k=0

cm,k +
M∑

m=0

m−1∑
k=0

∞∑
j=j0+1

cm,kr
j−j0
k

=
∑
x∈N

πx +
M∑

m=0

m∑
k=0

cm,krk
1− rk

.
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