Home  Articles  Past volumes  About  Login  Notify  Contact  Search  


References[1] Billingsley, P(1999). Convergence of Probability Measures, 2nd ed., Wiley, New York. MR1700749 [2] Bremaud, P. (1981). Point Processes and Queues: Martingale Dynamics, SpringerVerlag, New York. MR0636252 [3] Decreusefond, L. and Moyal, P. (2008). A functional central limit theorem for the M∕GI∕∞ queue. Ann. Appl. Probab. 18(6) 2156–2178. MR2473653 [4] Donsker, M. (1952). Justification and extension of Doob’s heuristic approach to the KolmogorovSmirnov theorems. Ann. Math. Statist. 23 277–281. MR0047288 [5] Duffield, N. and Whitt, W. (1997). Control and recovery from rare congestion events in a large multiserver system. Queueing Syst. 26 69–104. MR1480867 [6] Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes: Characterization and Convergence. Wiley, New York. MR0838085 [7] Feller, W. (1971). An Introduction to Probability Theory and its Applications, John Wiley and Sons, New York. MR0270403 [8] Gerhardt, I. and Nelson, B. (2009). Transforming renewal processes for simulation of nonstationary arrival processes. INFORMS J. Comput. 21(4) 630–640. MR2588345 [9] Glynn, P. W. and Whitt, W. (1991). A new view of the heavytraffic limit theorem for the infiniteserver queue. Adv. in Appl. Probab. 23(1) 188–209. MR1091098 [10] Goldberg, D. and Whitt, W. (2008). The last departure time from an M_{t}∕G∕∞ queue with a terminating arrival process. Queueing Syst. 58(2) 77–104. MR2390269 [11] He, B., Liu, Y. and Whitt, W. (2016). Staffing a service system with nonPoisson nonstationary arrivals. Probability in the Engineering and Information Sciences. 30 593–621. MR3569137 [12] Gut, A. (2005). Probability: A Graduate Course. Springer, New York. MR2125120 [13] Halfin, S. and Whitt, W. (1981). Heavytraffic limits for queues with many exponential servers. Oper. Res. 29(3) 567–588. MR0629195 [14] Iglehart, D. and Whitt, W. (1970). Multiple channel queues in heavy traffic II: Sequences, networks, and batches. Adv. in Appl. Probab. 2(2) 355–369. MR0282443 [15] Jacod, J. and Shiryaev, A. N. (1987). Limit Theorems for Stochastic Processes. SpringerVerlag, Berlin. MR0959133 [16] Kang, W. and Pang, G. (2014). Equivalence of fluid models for G_{t}∕GI∕N + GI queues. Working paper, Pennsylvania State University. [17] Kang, W. and Ramanan, K. (2010). Fluid limits of manyserver queues with reneging. Ann. Appl. Probab. 20(6) 2204–2260. MR2759733 [18] Kaspi, H. and Ramanan, K. (2011). Law of large numbers limits for manyserver queues. Ann. Appl. Probab. 21(1) 33–114. MR2759196 [19] Kaspi, H. and Ramanan, K. (2013). SPDE limits of manyserver queues. Ann. Appl. Probab. 23(1) 145–229. MR3059233 [20] Krichagina, E. V. and Puhalskii, A. A. (1997). A heavytraffic analysis of a closed queueing system with a GI∕∞ service center. Queueing Syst. 25 235–280. MR1458591 [21] Liu, R., Kuhl, M. E., Liu, Y. and Wilson, J. R. Modeling and simulation of nonstationary and nonPoisson processes. Working paper, North Carolina State University, 2017. [22] Liu, Y. and Whitt, W. (2011). Largetime asymptotics for the G_{t}∕M_{t}∕s_{t} + GI_{t} manyserver fluid queue with abandonment. Queueing Systems 67 145–182. MR2771198 [23] Liu, Y. and Whitt, W. (2012). A manyserver fluid limit for the G_{t}∕GI∕s_{t}+GI queueing model experiencing periods of overloading. Oper. Res. Lett. 40(5) 307–312. MR2956434 [24] Liu, Y. and Whitt, W. (2014). Manyserver heavytraffic limit for queues with timevarying parameters. Ann. Appl. Probab. 24(1) 378–421. MR3161651 [25] Liu, Y. and Whitt, W. (2014). Stabilizing performance in networks of queues with timevarying arrival rates. Prob. Engr. Inf. Sci. 28(4) 419–449. MR3256197 [26] Louchard, G. (1988). Large finite population queueing systems. Part 1: The infinite server model Comm. Statist. Stochastic Models 4(3) 473–505. MR0971602 [27] Marcus, M. B. and Zinn, J. (1984). The bounded law of the iterated logarithm for the weighted empirical distribution process in the noni.i.d case. Ann. Probab. 12(2) 335–360. MR0735842 [28] Massey, W. A. and Whitt, W. (1994). Unstable asymptotics for nonstationary queues. Math. Oper. Res. 19(2) 267–291. MR1290501 [29] Pang, G., Talreja, R. and Whitt, W. (2007). Martingale proofs of manyserver heavytraffic limits for Markovian queues. Probab. Surv. 4 193–267. MR2368951 [30] Pang, G. and Whitt, W. (2010). Twoparameter heavytraffic limits for infiniteserver queues. Queueing Syst. 65(4) 325–364. MR2671058 [31] Pang, G. and Whitt, W. (2013). Twoparameter heavytraffic limits for infiniteserver queues with dependent service times. Queueing Syst. 73(2) 119–146. MR3016577 [32] Puhalskii, A. A. and Reed, J. E. (2010). On manyserver queues in heavy traffic. Ann. Appl. Probab. 20(1) 129–195. MR2582645 [33] Puhalskii, A. A. and Reiman, M. I. (2000). The multiclass GI∕PH∕N queue in the HalfinWhitt regime. Adv. in Appl. Probab. 32(2) 564–595. MR1778580 [34] Reed, J. (2009). The G∕GI∕N queue in the HalfinWhitt regime. Ann. Appl. Probab. 19(6) 2211–2269. MR2588244 [35] Reed, J. and Talreja, R. (2015). Distributionvalued heavytraffic limits for the G∕GI∕∞ queue. Ann. Appl. Probab. 25(3) 1420–1474. MR3325278 [36] Shorack, G. R. and Wellner, J. A. (2009). Empirical Processes with Applications to Statistics. SIAM Classics 59 (Updated version of 1986 Wiley edition). MR3396731 [37] Skorohod, A. V. (1956). Limit theorems for stochastic processes. Theor. Probab. Appl. 1 261–290. MR0084897 [38] Talreja, R. and Whitt, W. (2009). Heavytraffic limits for waiting times in manyserver queues with abandonment. Ann. Appl. Probab. 19(6) 2137–2175. MR2588242 [39] Vapnik, V. N. and Cervonenkis, A. Y. (1971). On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications 16 264–280. MR0288823 [40] Whitt, W. (1982). On the heavytraffic limit theorem for GI∕G∕∞ queues. Adv. Appl. Probab. 14(1) 171–190. MR0644013 [41] Whitt, W. (2002). StochasticProcess Limits, SpringerVerlag, New York. MR1876437 [42] Whitt, W. (2005). Heavytraffic limits for the GI∕H_{2}^{∗}∕n∕m queue. Math. Oper. Res. 30(1) 1–27. MR2125135 [43] Zhang, J. (2013). Fluid models of manyserver queues with abandonment. Queueing Syst. 73(2) 147–193. MR3016578 

Home  Articles  Past volumes  About  Login  Notify  Contact  Search Stochastic Systems. ISSN: 19465238 