Home  Articles  Past volumes  About  Login  Notify  Contact  Search  


References[1] S. L. Bell and R. J. Williams. Dynamic scheduling of a system with two parallel servers in heavy traffic with resource pooling: Asymptotic optimality of a threshold policy. Ann. Appl. Probab., 11(3):608–649, 2001. MR1865018 [2] S. L. Bell and R. J. Williams. Dynamic scheduling of a parallel server system in heavy traffic with complete resource pooling: Asymptotic optimality of a threshold policy. Electron. J. Probab., 10:1044–1115, 2005. [3] V. E. Beneš, L. A. Shepp, and H. S. Witsenhausen. Some solvable stochastic control problems. Stochastics, 4(1):39–83, 1980/81. MR0587428 [4] A. Budhiraja and A. P. Ghosh. A large deviation approach to asymptotically optimal control of crisscross network in heavy traffic. The Annals of Applied Probability, 15(3):1887–1935, 2005. [5] A. Budhiraja and A. P. Ghosh. Diffusion approximations for controlled stochastic networks: An asymptotic bound for the value function. Ann. Appl Probab, 16(4):1962–2006, 2006. MR2288710 [6] A. Budhiraja and K. Ross. Convergent numerical scheme for singular stochastic control with state constraints in a portfolio selection problem. SIAM J. Control Optim., 45(6):2169–2206, 2007. MR2285720 [7] A. Budhiraja and K. Ross. Optimal stopping and free boundary characterizations for some brownian control problems. Ann Appl. Probab., 18:2367–2391, 2008. MR2474540 [8] A. Budhiraja and A. P. Ghosh. Controlled stochastic networks in heavy traffic: convergence of value functions. Ann. Appl. Probab., 22(2):734–791, 2012. MR2953568 [9] A. Budhiraja, A. P. Ghosh, and X. Liu, Scheduling control for Markov modulated singleserver multiclass queueing systems in heavy traffic, Queueing Systems, 78(1), 57–97, 2014. MR3238008 [10] H. Chen and A. Mandelbeaum. Leontief systems, RBV’s and RBM’s. In M. H. A. Davis and R. J. Elliott, editors, Applied Stochastic Analysis, pages 1–43. Gordon and Breach, 1991. [11] J. G. Dai and W. Lin. Asymptotic optimality of maximum pressure policies in stochastic processing networks. Ann. Appl. Probab., 18(6):2239–2299, 2008. MR2473656 [12] S. N. Ethier and T. G. Kurtz, Markov processes: Characterization and convergence, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, 1986. [13] J. M. Harrison. Brownian models of queueing networks with heterogeneous customer population. In W. Fleming and F. L. Lion, editors, Stochastic Differential Systems, Stochastic Control Theory and Applications, pages 147–186. Springer, New York, 1988. [14] J. M. Harrison. Heavy traffic analysis of a system with parallel servers: asymptotic optimality of discretereview policies. Ann. Appl. Probab., 8(3):822–848, 1998. [15] J. M. Harrison and M. I. Taksar. Instantaneous control of Brownian motion. Math. Oper. Res., 8(3):439–453, 1983. MR0716123 [16] J. M. Harrison and J. A. Van Mieghem. Dynamic control of Brownian networks: state space collapse and equivalent workload formulations. Ann. Appl. Probab., 7(3):747–771, 1997. MR1459269 [17] J. M. Harrison and L. M. Wein. Scheduling networks of queues: heavy traffic analysis of a simple open network. Queueing Systems Theory Appl., 5(4):265–279, 1989. [18] Sunil Kumar. Twoserver closed networks in heavy traffic: diffusion limits and asymptotic optimality. Ann. Appl. Probab., 10(3):930–961, 2000. [19] Sunil Kumar and Kumar Muthuraman. A numerical method for solving singular stochastic control problems. Oper. Res., 52(4):563–582, 2004. [20] H. J. Kushner and L. F. Martins. Numerical methods for stochastic singular control problems. SIAM J. Control Optim., 29:1443–1475, 1991. [21] H. J. Kushner and L. F. Martins. Heavy traffic analysis of a controlled multiclass queueing network via weak convergence methods. SIAM J. Control Optim., 34(5):1781–1797, 1996. [22] L. F. Martins, S. E. Shreve, and H. M. Soner. Heavy traffic convergence of a controlled, multiclass queueing system. SIAM J. Control Optim., 34:2133–2171, 1996. [23] Kumar Muthuraman and Sunil Kumar. Solving freeboundary problems with applications in finance. Found. Trends Stoch. Syst., 1(4):259–341, 2006. MR2438635 [24] V. Pesic and R. J. Williams, Dynamic scheduling for parallel server systems in heavy traffic: Graphical structure, decoupled workload matrix and some sufficient conditions for solvability of the Brownian control problem, Preprint. [25] S. E. Shreve and H. M. Soner. A free boundary problem related to singular stochastic control. In Applied stochastic analysis (London, 1989), volume 5 of Stochastics Monogr., pages 265–301. Gordon and Breach, New York, 1991. [26] A. V. Skorohod. Stochastic equations for diffusions in a bounded region. Theory Probab. Appl., (6):264–274, 1961. [27] H. Mete Soner and S. E. Shreve. Regularity of the value function for a twodimensional singular stochastic control problem. SIAM J. Control Optim., 27(4):876–907, 1989. MR1001925 [28] P. Yang, H. Chen, and D. Yao. Control and scheduling in a twostation queueing network. Queueing Syst. Theory Appl., 18:301–332, 1994. 

Home  Articles  Past volumes  About  Login  Notify  Contact  Search Stochastic Systems. ISSN: 19465238 