Home  Articles  Past volumes  About  Login  Notify  Contact  Search  


References[1] Alderson, D. L. and Li, L. (2007). Diversity of graphs with highly variable connectivity. Physical Review E 75, 4, 046102. MR2358589 [2] Bassler, K. E., Del Genio, C. I., Erds, P. L., Miklós, I., and Toroczkai, Z. (2015). Exact sampling of graphs with prescribed degree correlations. New Journal of Physics 17, 8, 083052. MR3404225 [3] Bollobás, B. (1980). A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. European Journal of Combinatorics 1, 4, 311–316. http://www.sciencedirect.com/science/article/pii/S0195669880800308. MR0595929 [4] Chen, N. and OlveraCravioto, M. (2015). Efficient simulation for branching linear recursions. In Winter Simulation Conference (WSC), 2015. IEEE, 2716–2727. [5] Deprez, P. and Wüthrich, M. V. (2015). Construction of directed assortative configuration graphs. arXiv preprint arXiv:1510.00575. MR3683431 [6] Hurd, T. (2015). The construction and properties of assortative configuration graphs. arXiv preprint arXiv:1512.03084. [7] Kannan, R., Tetali, P., and Vempala, S. (1999). Simple markovchain algorithms for generating bipartite graphs and tournaments. Random Structures and Algorithms 14, 4, 293–308. MR1691976 [8] Maslov, S. and Sneppen, K. (2002). Specificity and stability in topology of protein networks. Science 296, 5569, 910–913. [9] Menche, J., Valleriani, A., and Lipowsky, R. (2010). Asymptotic properties of degreecorrelated scalefree networks. Physical Review E 81, 4, 046103. [10] Mesfioui, M. and Tajar, A. (2005). On the properties of some nonparametric concordance measures in the discrete case. Nonparametric Statistics 17, 5, 541–554. http://www.tandfonline.com/doi/abs/10.1080/10485250500038967. MR2141361 [11] Molloy, M. and Reed, B. (1995). A critical point for random graphs with a given degree sequence. Random structures & algorithms 6, 2–3, 161–180. http:// onlinelibrary.wiley.com/doi/10.1002/rsa.3240060204/full. MR1370952 [12] Newman, M. E. (2002). Assortative mixing in networks. Physical review letters 89, 20, 208701. http://prl.aps.org/abstract/PRL/v89/i20/e208701. MR1975193 [13] Newman, M. E., Strogatz, S. H., and Watts, D. J. (2001). Random graphs with arbitrary degree distributions and their applications. Physical Review E 64, 2, 026118. http://journals.aps.org/pre/abstract/10.1103/PhysRevE.64.026118. [14] Schweizer, B. and Wolff, E. F. (1981). On nonparametric measures of dependence for random variables. The annals of statistics, 879–885. MR0619291 [15] Spearman, C. (1904). The proof and measurement of association between two things. The American journal of psychology 15, 1, 72–101. [16] Stanton, I. and Pinar, A. (2012). Constructing and sampling graphs with a prescribed joint degree distribution. Journal of Experimental Algorithmics (JEA) 17, 3–5. MR2981864 [17] Van Der Hofstad, R. (2016). Random graphs and complex networks. Vol. 1. Cambridge University Press. MR3617364 [18] van der Hofstad, R. and Litvak, N. (2014). Degreedegree dependencies in random graphs with heavytailed degrees. Internet mathematics 10, 3–4, 287–334. MR3259269 [19] van der Hoorn, P. (2016). Asymptotic analysis of network structures: degreedegree correlations and directed paths. Ph.D. thesis, University of Twente. [20] van der Hoorn, P. and Litvak, N. (2014). Convergence of rank based degreedegree correlations in random directed networks. Moscow Journal of Combinatorics and Number Theory 4, 4, 45–83. http://mjcnt.phystech. edu/en/article.php?id=92. MR3375960 [21] van der Hoorn, P. and Litvak, N. (2015). Degreedegree dependencies in directed networks with heavytailed degrees. Internet Mathematics 11, 2, 155–179. http://dx.doi.org/10.1080/15427951.2014.927038. MR3316861 [22] Villani, C. (2008). Optimal transport: old and new. Vol. 338. Springer Science & Business Media. MR2459454 [23] XulviBrunet, R. and Sokolov, I. (2004). Reshuffling scalefree networks: From random to assortative. Physical Review E 70, 6, 066102. [24] Yang, D., Pan, L., and Zhou, T. (2017). Lower bound of assortativity coefficient in scalefree networks. Chaos: An Interdisciplinary Journal of Nonlinear Science 27, 3, 033113. MR3627943 

Home  Articles  Past volumes  About  Login  Notify  Contact  Search Stochastic Systems. ISSN: 19465238 