Home  Articles  Past volumes  About  Login  Notify  Contact  Search  


References[1] Anantharam, V. (1989). How large delays build up in a GI∕G∕1 queue. Queueing Systems Theory Appl. 5 345–367. MR1030475 [2] Blanchet, J., Glynn, P. and Meyn, S. (2013). Large deviations for the empirical mean of an M∕M∕1 queue. Queueing Syst. 73 425–446. MR3036010 [3] Borovkov, A. A., Boxma, O. J. and Palmowski, Z. (2003). On the integral of the workload process of the single server queue. J. Appl. Probab. 40 200–225. MR1953775 [4] Borovkov, A. A. and Sahanenko, A. I. (1973). Remarks on the convergence of random processes in nonseparable metric spaces and on the nonexistence of a Borel measure for processes in C(0,∞). Teor. Verojatnost. i Primenen. 18 812–815. MR0328984 [5] Dembo, A. and Zajic, T. (1995). Large deviations: from empirical mean and measure to partial sums. Stoch. Proc. Appl. 57 191–224. MR1334969 [6] Dembo, A. and Zeitouni, O. (1998). Large Deviation Techniques and Applications. Springer. MR1619036 [7] Deuschel, J. D. and Stroock, D. W. (1989). Large Deviations 137. Academic Press Inc. MR0997938 [8] Duffield, N. G., Lewis, J. T., O’Connell, N., Russell, R. and Toomey, F. (1995). Entropy of ATM traffic streams: a tool for estimating QoS parameters. IEEE J. Sel. Area Comm. 13 981–990. [9] Duffy, K., Lewis, J. T. and Sullivan, W. G. (2003). Logarithmic asymptotics for the supremum of a stochastic process. Ann. Appl. Probab. 13 430–445. MR1970270 [10] Duffy, K. and Metcalfe, A. P. (2005). The large deviations of estimating rate functions. J. Appl. Probab. 42 267–274. MR2144909 [11] Duffy, K. R. and Malone, D. (2008). Logarithmic asymptotics for a singleserver processing distinguishable sources. Math. Methods Oper. Res. 68 509–537. MR2457294 [12] Duffy, K. R. and Meyn, S. P. (2010). Most likely paths to error when estimating the mean of a reflected random walk. Perform. Evaluation 67 1290–1303. [13] Duffy, K. R. and Meyn, S. P. (2010). Estimating Loynes’ exponent. Queueing Syst. 68 285–293. MR2834199 [14] Ganesh, A., O’Connell, N. and Wischik, D. (2004). Big Queues. Lecture Notes in Mathematics 1838. SpringerVerlag, Berlin. MR2045489 [15] Ganesh, A. J. and O’Connell, N. (2002). A large deviation principle with queueing applications. Stoch. Stoch. Rep. 73 25–35. MR1914976 [16] Glynn, P. and Whitt, W. (1994). Logarithmic asymptotics for steadystate tail probabilities in a singleserver queue. J. Appl. Probab. 31A 413–430. MR1274722 [17] Kontoyiannis, I. and Meyn, S. P. (2005). Large deviations asymptotics and the spectral theory of multiplicatively regular Markov processes. Electron. J. Probab. 10 no. 3, 61–123 (electronic). MR2120240 [18] Kulik, R. and Palmowski, Z. (2011). Tail behaviour of the area under a random process, with applications to queueing systems, insurance and percolations. Queueing Syst. 68 275–284. MR2834198 [19] Lelarge, M. (2008). Tail asymptotics for discrete event systems. Discrete Event Dyn. Syst. 18 563–584. MR2443657 [20] Majewski, K. (2000). Single class queueing networks with discrete and fluid customers on the time interval ℝ. Queueing Syst. 36 405–435. MR1823977 [21] Meyn, S. P. (2008). Control Techniques for Complex Networks. Cambridge University Press. MR2372453 [22] Müller, D. W. (1968). VerteilungsInvarianzprinzipien für das starke Gesetz der grossen Zahl. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 10 173–192. MR0232428 [23] Puhalskii, A. (1995). Large deviation analysis of the single server queue. Queueing Syst. 21 5–66. MR1372048 [24] Riesz, F. and Nagy, B. S. (1955). Functional Analysis. Blackie and Son Limited. [25] Rockafellar, R. T. and Wets, R. J. B. (1998). Variational Analysis. Springer. MR1491362 [26] Whitt, W. (1972). Stochastic Abelian and Tauberian theorems. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 22 251–267. MR0339326 [27] Whitt, W. (2002). StochasticProcess Limits. SpringerVerlag, New York. MR1876437 [28] Wischik, D. J. (2001). Sample path large deviations for queues with many inputs. Ann. Appl. Probab. 11 379–404. MR1843050 

Home  Articles  Past volumes  About  Login  Notify  Contact  Search Stochastic Systems. ISSN: 19465238 