Home  Current  Past volumes  About  Login  Notify  Contact  Search  


References[1] Aragão de Carvalho, C., Caracciolo, S., and Fröhlich, J. (1983). Polymers and gϕ^{4} theory in four dimensions. Nucl. Phys. B 215 [FS7], 209–248. MR0690735 [2] Berezin, F. (1966). The Method of Second Quantization. Academic Press, New York. MR0208930 [3] Brydges, D., Evans, S., and Imbrie, J. (1992). Selfavoiding walk on a hierarchical lattice in four dimensions. Ann. Probab. 20, 82–124. MR1143413 [4] Brydges, D., Fröhlich, J., and Sokal, A. (1983). The random walk representation of classical spin systems and correlation inequalities. II. The skeleton inequalities. Commun. Math. Phys. 91, 117–139. MR0719815 [5] Brydges, D., Fröhlich, J., and Spencer, T. (1982). The random walk representation of classical spin systems and correlation inequalities. Commun. Math. Phys. 83, 123–150. MR0648362 [6] Brydges, D. and Imbrie, J. (2003a). Endtoend distance from the Green’s function for a hierarchical selfavoiding walk in four dimensions. Commun. Math. Phys. 239, 523–547. MR2000928 [7] Brydges, D. and Imbrie, J. (2003b). Green’s function for a hierarchical selfavoiding walk in four dimensions. Commun. Math. Phys. 239, 549–584. MR2000929 [8] Brydges, D., Járai Jr., A., and Sakai, A. (2001). Selfinteracting walk and functional integration. Unpublished document. [9] Brydges, D. and Muñoz Maya, I. (1991). An application of Berezin integration to large deviations. J. Theoret. Probab. 4, 371–389. MRMR1100240 [10] Brydges, D. and Slade, G. Papers in preparation. [11] Dynkin, E. (1983). Markov processes as a tool in field theory. J. Funct. Anal. 50, 167–187. MR0693227 [12] Fernández, R., Fröhlich, J., and Sokal, A. (1992). Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory. Springer, Berlin. MR1219313 [13] Gennes, P. de (1972). Exponents for the excluded volume problem as derived by the Wilson method. Phys. Lett. A38, 339–340. [14] Greub, W., Halperin, S., and Vanstone, R. (1972). Connections, Curvatures and Cohomology. Vol. I. Academic Press, New York. MR0336650 [15] Imbrie, J. (2003). Dimensional reduction and crossover to meanfield behavior for branched polymers. Ann. Henri Poincaré 4, Suppl. 1, S445–S458. MR2037570 [16] Le Jan, Y. (1987). Temps local et superchamp. In Séminaire de Probabilités XXI. Lecture Notes in Mathematics #1247. Springer, Berlin, 176–190. MR0941982 [17] Le Jan, Y. (1988). On the Fock space representation of functionals of the occupation field and their renormalization. J. Funct. Anal. 80, 88–108. MR0962868 [18] Madras, N. and Slade, G. (1993). The SelfAvoiding Walk. Birkhäuser, Boston. MR1197356 [19] McKane, A. (1980). Reformulation of n → 0 models using anticommuting scalar fields. Phys. Lett. A 76, 22–24. MR0594576 [20] Mitter, P. and Scoppola, B. (2008). The global renormalization group trajectory in a critical supersymmetric field theory on the lattice Z^{3}. J. Stat. Phys. 133, 921–1011. MR2461190 [21] Parisi, G. and Sourlas, N. (1980). Selfavoiding walk and supersymmetry. J. Phys. Lett. 41, L403–L406. [22] Rudin, W. (1976). Principles of Mathematical Analysis, 3rd ed. McGraw–Hill, New York. MR0385023 [23] Salmhofer, M. (1999). Renormalization: An Introduction. Springer, Berlin. MR1658669 [24] Seeley, R. (1964). Extensions of C^{∞} functions defined on a half space. Proc. Amer. Math. Soc. 15, 625–626. MR0165392 [25] Symanzik, K. (1969). Euclidean quantum field theory. In Local Quantum Field Theory, R. Jost, Ed. Academic Press, New York. 

Home  Current  Past volumes  About  Login  Notify  Contact  Search Probability Surveys. ISSN: 15495787 