Home | Current | Past volumes | About | Login | Notify | Contact | Search
 Probability Surveys > Vol. 14 (2017) open journal systems 

Opinion exchange dynamics

Elchanan Mossel, Massachusetts Institute of Technology
Omer Tamuz, California Institute of Technology
Full Text: PDF

Mossel, Elchanan, Tamuz, Omer, Opinion exchange dynamics, Probability Surveys, 14, (2017), 155-204 (electronic). DOI: 10.1214/14-PS230.


[1]    D. Aldous and J. Steele. The objective method: Probabilistic combinatorial optimization and local weak convergence. Probability on Discrete Structures (Volume 110 of Encyclopaedia of Mathematical Sciences), ed. H. Kesten, 110:1–72, 2003. MR2023650

[2]    R. J. Aumann. Agreeing to disagree. The Annals of Statistics, 4(6):1236–1239, 1976. MR0433654

[3]    V. Bala and S. Goyal. Learning from neighbours. Review of Economic Studies, 65(3):595–621, July 1998.

[4]    A. V. Banerjee. A simple model of herd behavior. The Quarterly Journal of Economics, 107(3):797–817, 1992.

[5]    F. Benezit, P. Thiran, and M. Vetterli. Interval consensus: from quantized gossip to voting. In ICASSP 2009, pages 3661–3664, 2009.

[6]    I. Benjamini, S.-O. Chan, R. O’Donnell, O. Tamuz, and L.-Y. Tan. Convergence, unanimity and disagreement in majority dynamics on unimodular graphs and random graphs. Stochastic Processes and their Applications, 126(9):2719–2733, 2016. MR3522298

[7]    I. Benjamini and O. Schramm. Recurrence of distributional limits of finite planar graphs. Selected Works of Oded Schramm, pages 533–545, 2011. MR2883381

[8]    E. Berger. Dynamic monopolies of constant size. Journal of Combinatorial Theory, Series B, 83(2):191–200, 2001. MR1866395

[9]    S. Bikhchandani, D. Hirshleifer, and I. Welch. A theory of fads, fashion, custom, and cultural change as informational cascades. Journal of political Economy, pages 992–1026, 1992.

[10]    D. Cartwright and F. Harary. Structural balance: a generalization of heider’s theory. Psychological review, 63(5):277, 1956.

[11]    P. Clifford and A. Sudbury. A model for spatial conflict. Biometrika, 60(3):581–588, 1973. MR0343950

[12]    J.-A.-N. Condorcet. Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix. De l’Imprimerie Royale, 1785.

[13]    M. H. DeGroot. Reaching a consensus. Journal of the American Statistical Association, 69(345):118–121, 1974.

[14]    P. DeMarzo and C. Skiadas. On the uniqueness of fully informative rational expectations equilibria. Economic Theory, 13(1):1–24, 1999. MR1658993

[15]    J. L. Doob. Stochastic Processes. John Wiley and Sons, 1953. MR0058896

[16]    J. L. Doob. Classical potential theory and its probabilistic counterpart, volume 262. Springer, 2001. MR1814344

[17]    D. Gale and S. Kariv. Bayesian learning in social networks. Games and Economic Behavior, 45(2):329–346, November 2003. MR2023667

[18]    J. Geanakoplos. Common knowledge. Handbook of game theory with economic applications, 2:1437–1496, 1994. MR1313236

[19]    J. Geanakoplos and H. Polemarchakis. We can’t disagree forever. Journal of Economic Theory, 28(1):192–200, 1982.

[20]    Y. Ginosar and R. Holzman. The majority action on infinite graphs: strings and puppets. Discrete Mathematics, 215(1–3):59–72, 2000. MR1746448

[21]    E. Goles and J. Olivos. Periodic behaviour of generalized threshold functions. Discrete Mathematics, 30(2):187–189, 1980. MR0566436

[22]    B. Golub and M. O. Jackson. Naive learning in social networks and the wisdom of crowds. American Economic Journal: Microeconomics, 2(1):112–149, 2010.

[23]    W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American statistical association, 58(301):13–30, 1963. MR0144363

[24]    R. A. Holley and T. M. Liggett. Ergodic theorems for weakly interacting infinite systems and the voter model. The annals of probability, pages 643–663, 1975. MR0402985

[25]    J. Kahn, G. Kalai, and N. Linial. The influence of variables on boolean functions. In Proceedings of the 29th Annual Symposium on Foundations of Computer Science, pages 68–80, 1988.

[26]    D. A. Levin, Y. Peres, and E. L. Wilmer. Markov chains and mixing times. AMS Bookstore, 2009. MR2466937

[27]    W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4):115–133, 1943. MR0010388

[28]    G. Moran. On the period-two-property of the majority operator in infinite graphs. Transactions of the American Mathematical Society, 347(5):1649–1668, 1995. MR1297535

[29]    E. Mossel, J. Neeman, and O. Tamuz. Majority dynamics and aggregation of information in social networks. Autonomous Agents and Multi-Agent Systems, pages 1–22, 2013.

[30]    E. Mossel, N. Olsman, and O. Tamuz. Efficient bayesian learning in social networks with gaussian estimators. In Proceedings of the 54th annual Allerton conference on Communication, control, and computing. IEEE Press, 2016.

[31]    E. Mossel and G. Schoenebeck. Reaching consensus on social networks. In Proceedings of 1st Symposium on Innovations in Computer Science, pages 214–229, 2010.

[32]    E. Mossel, A. Sly, and O. Tamuz. On agreement and learning. Preprint at http://arxiv.org/abs/1207.5895, 2012.

[33]    E. Mossel, A. Sly, and O. Tamuz. Asymptotic learning on bayesian social networks. Probability Theory and Related Fields, pages 1–31, 2013. MR3152782

[34]    E. Mossel, A. Sly, and O. Tamuz. Strategic learning and the topology of social networks. Econometrica, 83(5):1755–1794, 2015. MR3414192

[35]    M. J. Osborne and A. Rubinstein. A course in game theory. MIT press, 1994. MR1301776

[36]    M. Ostrovsky. Information aggregation in dynamic markets with strategic traders. Econometrica, 80(6):2595–2647, 2012. MR3001136

[37]    L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation ranking: bringing order to the web. Stanford InfoLab, 1999.

[38]    D. Rosenberg, E. Solan, and N. Vieille. Informational externalities and emergence of consensus. Games and Economic Behavior, 66(2):979–994, 2009. MR2543312

[39]    A. Rubinstein. Economic fables. Open Book Publishers, 2012.

[40]    L. Saloff-Coste. Lectures on finite markov chains. In P. Bernard, editor, Lectures on Probability Theory and Statistics, volume 1665 of Lecture Notes in Mathematics, pages 301–413. Springer Berlin Heidelberg, 1997. MR1490046

[41]    J. Sebenius and J. Geanakoplos. Don’t bet on it: Contingent agreements with asymmetric information. Journal of the American Statistical Association, 78(382):424–426, 1983. MR0711118

[42]    L. Smith and P. Sørensen. Pathological outcomes of observational learning. Econometrica, 68(2):371–398, 2000. MR1748010

[43]    M. Talagrand. On Russo’s approximate zero-one law. The Annals of Probability, 22(3):1576–1587, 1994. MR1303654

[44]    O. Tamuz and R. J. Tessler. Majority dynamics and the retention of information. Israel Journal of Mathematics, 206(1):483–507, 2015. MR3319649

Home | Current | Past volumes | About | Login | Notify | Contact | Search

Probability Surveys. ISSN: 1549-5787