Home | Current | Past volumes | About | Login | Notify | Contact | Search
 Probability Surveys > Vol. 3 (2006) open journal systems 

The geometry of Brownian surfaces

Remi Leandre, Institut de Mathematiques, Universite de Bourgogne

Motivated by Segal's axiom of conformal field theory, we do a survey on geometrical random fields. We do a history in order to arrive at a field theoretical analog of Klauder's quantization in Hamiltonoan quantum mechanic by using infinite dimensional Airault-Malliavin Brownian motion.

AMS 2000 subject classifications: Primary 60G60; secondary 81T40.

Keywords: Segal’s axiom, Airault-Malliavin equation.

Creative Common LOGO

Full Text: PDF

Leandre, Remi, The geometry of Brownian surfaces, Probability Surveys, 3, (2006), 37-88 (electronic).


[1]   Aida S.: Logarithmic Sobolev inequalities on loop spaces over Riemannian manifolds. In “Stochastic Analysis” Davies I.M.K, Elworthy K.D., Truman A. edt. World Scientific (1996), 1–20. MR1453122

[2]   Airault H. Malliavin P.: Analysis over loop groups. Publication University Paris VI. (1991).

[3]   Albeverio S.: Loop groups, random gauge fields, Chern-Simons models, strings: some recent mathematical developments. In “Espaces de lacets” R. Léandre, S. Paycha, T. Wuerzbacher edt. Publ. Uni. Strasbourg (1996), 5–34.

[4]   Albeverio S.: Theory of Dirichlet forms and applications. Ecole d’été de Saint-Flour XXX. Lect. Notes Math. 1816 (2003), 1–106. MR2009816

[5]   Albeverio S. Jost J. Paycha S. Scarlatti S.: A mathematical introduction to string theory. Variational problems, geometric and probabilistic methods. Cambridge University Press (1997). MR1480168

[6]   Albeverio S. Léandre R. Roeckner M.: Construction of a rotational invariant diffusion on the free loop space. C.R.A.S. Serie I. 316, (1993), 287–292. MR1205201

[7]   Alvarez-Gaumé L.: Supersymmetry and the Atiyah-Singer index theorem. Com. Math. Phys. 90 (1983), 161–173. MR0714431

[8]   Ané C. Blachere S. Chafai D. Fougeres P. Gentil I. Malrieu F. Roberto C. Scheffer G.: Sur les inégalités de Sobolev logarithmiques. Soc. Math. France (2000). MR1845806

[9]   Araf’eva I.Y.: Non-Abelian Stokes formula. Teo. Mat. Fiz. 43 (1980), 353–356.

[10]   Arnaudon M. Paycha S.: Stochastic tools on Hilbert manifolds: interplay with geometry and physics. Com. Math. Phys. 197 (1997), 243–260. MR1463828

[11]   Azencott R.: Grandes déviations et applicattions. Ecole d’ été de Saint-Flour VII. Lect. Notes Math. 774, Springer (1980). MR0590626

[12]   Baxendale P.: Gaussian measures on Function spaces. Amer. J. Math. 98 (1976), 891–952. MR0467809

[13]   Belopolskaya Y.L., Daletskii Y.L.: Stochastic differential equation and differential geometry. Kluwer (1990).

[14]   Bonic R. Frampton J.: Smooth functions on Banach manifolds. J. Math. Mech. 15 (1966), 877–898. MR0198492

[15]   Bonic R. Frampton J. Tromba A.: Λ-Manifolds. J. Funct. Anal. 3 (169), 310–320.

[16]   Boufoussi B., Eddahbi M., N’zi M.: Freidlin-Wentzell type estimates for solutions of hyperbolic SPDEs in Besov-Orlicz spaces and applications. Stoch. Anal. Appl. 18 (2000), 697–722. MR1780166

[17]   Bismut J.M.: Large deviations and the Malliavin Calculus. Progress. Math. 45. Birkhäuser (1984) MR0755001

[18]   Brylinski J.L.: Loop spaces, characteristic classes and geometric quantization. Progr. Math. 107. Birkhäuser (1992). MR1197353

[19]   Brzezniak Z. Elworthy K.D.: Stochastic differential equation on Banach manifolds. Meth. Funct. Anal. Topology. (In honour of Y. Daletskii) 6. (2000), 43–80. MR1784435

[20]   Brzezniak Z. Léandre R.: Horizontal lift of an infinite dimensional diffusion. Potential Anal. 12 (2000), 249–280. MR1752854

[21]   Brzezniak Z. Léandre R.:Stochastic pants over a Riemannian manifold. Preprint.

[22]   Cairoli R.: Sur une équation différentielle stochastique. C.R.A.S. Série A-B 274 (1972), A1739-A1742. MR0301796

[23]   Capitaine M. Hsu E. Ledoux M.: Martingales representation and a simple proof of logarithmic Sobolev inequalities on path spaces. Electron. Comm. Probab. 2 (1997), 71–81. MR1484557

[24]   Chen K.T.: Iterated path integrals of differential forms and loop space homology. Ann. Math. 97 (1973), 213–237. MR0380859

[25]   Daletskii Y.L.: Measures and stochastic differential equations on infinite-dimensional manifolds. In “Espaces de lacets” R. Léandre S. Paycha T. Wuerzbacher edt. Publ. Univ. Strasbourg (1996), 45–52.

[26]   Davies E.B.:Heat kernel and spectral theory. Cambridge Tracts in Math. 92 (1990). MR1103113

[27]   Dijkgraaf R.H.: The mathematics of M-theory. in “XIIIth Int. Con. Math. Phys.” International Press (2001), 47–62. MR1883294

[28]   Dixon L. Harvey J., Vafa C., Witten E.: Strings on orbifolds. Nucl. Phys. B 261 (1985), 678–686. MR0818423

[29]   Doss H., Dozzi M.: Estimations de grandes déviations pour les processus de diffusion a parametre multidimensionnel. Séminaire de Probabilités XX, 1984/1985, 68–80. Lect. Notes Math. 1204, Springer (1986). MR0942016

[30]   Dozzi M.: Stochastic processes with a multidimensional parameter. Pitman Research Notes 194. Longman (1989). MR0991563

[31]   Driver B.: A Cameron-Martin type quasi-invariance formula for Brownian motion on compact manifolds. J. Funct. Anal. 110 (1992), 272–376. MR1194990

[32]   Driver B. Lohrentz T.: Logarithmic Sobolev inequalities for pinned loop groups. J. Funct. Anal. 140 (1996), 381–448. MR1409043

[33]   Driver B. Roeckner M.: Construction of diffusions on path and loop spaces of compact Riemannian manifolds. C.R.A.S. Serie I. T 316 (1992), 603–608. MR1181300

[34]   Eberle A.: Diffusion on path and loop spaces: existence, finite dimensional approximation and Hoelder continuity. Probab. Theory Rel. Fields 109 (1997), 77–99. MR1469921

[35]   Emery M.: Stochastic Calculus in manifolds. Springer (1990). MR1030543

[36]   Emery M. Léandre R.: Sur une formule de Bismut. Séminaire de Probabilités XXIV. Lect. Notes Math. 1426 (1990), 448–452. MR1071560

[37]   Fang S.: Integration by parts formula and logarithmic Sobolev inequality on the path space over loop groups. Ann. Probab. 27 (1999), 664–683. MR1698951

[38]   Fang S. Malliavin P.: Stochastic analysis on the path space of a Riemannian manifold. J. Funct. Anal. 118 (1993), 249–274. MR1245604

[39]   Fang S. Zhang T.: Large deviation for the Brownian motion on a loop group. J. Theor. Probab. 14 (2001), 463–483. MR1838737

[40]   Felder G. Gawedzki K. Kupiainen A.: Spectra of Wess-Zumino-Witten modeles with arbitrary simple groups. Com. Math. Phys. 117 (1988), 127–159. MR0946997

[41]   Freed D.: The geometry of loop groups. J. Diff. Geom. 28 (1988), 223–276. MR0961515

[42]   Freed D.: Classical Chern-Simons theory. I. Adv. Math. 113 (1995), 237–303. MR1337109

[43]   Froelicher A.: Smooth structures. In “Category theory”. Kamps K.H. Pumplun W. Tholen T. eds. Lect. Notes Math. 963. Springer (1982), 68–81. MR0682936

[44]   Fukushima M.: Dirichlet forms and Markov Processes. North Holland (1980). MR0569058

[45]   Gawedzki K.: Topological actions in two-dimensional quantum field theory. In “Non perturbative quantum field theories”. G’t Hooft, A. Jaffe, G. Mack, P.K. Mitter, R. Stora eds. NATO Series 185. Plenum Press (1988), 101–142. MR1008277

[46]   Gawedzki K.: Conformal field theory. In “ Séminaire Bourbaki” Astérisque 177–178 (1989), 95–126. MR1040570

[47]   Gawedzki K.: Conformal field theory: a case study. In “Conformal field theory” Y. Nutku, C. Saclioglu, T. Turgut eds. Perseus Publishing (2000), 1–55. MR1881386

[48]   Gawedzki K.: Lectures on conformal field theory. In “Quantum fields and string: a course for mathematicians”. Vol 2. Amer. Math. Soc. (1999), 727–805. MR1701610

[49]   Gawedzki K. Reis N.: WZW branes and gerbes. Rev. Math. Phys. 14 (2002), 1281–1334. MR1945806

[50]   Gikhman I.I.: Existence of weak solutions of hyperbolic systems that contain two-parameter white noise. Theory of random processes, 6, (1978), 39–48.

[51]   Gilkey P.K: Invariance theory, the heat equation and the Atiyah-Singer theorem. C.R.C. Press (1995). MR1396308

[52]   Hajek B.: Stochastic equations of hyperbolic type and a two-parameter Stratonovitch calculus. Ann. Probab. 10 (1982), 451–463. MR0647516

[53]   He, X.M: The Markov properties of two-parameter Feller processes and solutions to stochastic differential equations (Chinese) Natur. Sci. J. Xiangtan Univ. 13 (1991), 33–40. MR1129600

[54]   Hoegh-Krohn R.: Relativistic quantum statistical mechanics in 2 dimensional space time. Com. Math. Phys. 38 (1974), 195–224. MR0366313

[55]   Hsu E.: Logarithmic Sobolev inequalities ob path spaces over Riemannian manifolds. C.R.A.S. Série I. 320 (1995), 1009–1014. MR1328728

[56]   Hsu E.: Integration by parts in loop spaces. Math. Ann. 309 (1997), 331–339. MR1474195

[57]   Huang Y.Z.: Two dimensional conformal geometry and vertex operator algebra. Progr. Math. 148. Birkhäuser (1999) MR1448404

[58]   Huang Y.Z. Lepowsky Y.: Vertex operator algebras and operads. In “The Gelfand mathematical Seminar. 1990–1992”. Birkhäuser (1993), 145–163. MR1247287

[59]   Iglesias P. Thesis. Université de Provence (1985).

[60]   Ikeda N. Watanabe S.:Stochastic differential equations and diffusion processes. North Holland (1981). MR0637061

[61]   Imkeller P.: Two-parameter martingales and their quadratic variation. Lect. Notes Math. 1308 (1988). MR0947545

[62]   Inahama Y.: Logaritmic Sobolev inequality on free loop groups for heat kernel measures associated with the general Sobolev spaces. J. Funct. Anal. 179 (2001), 170–213. MR1807257

[63]   Inahama Y.: Logarithmic Sobolev inequality for H0s-Metric on pinned loop groups. Inf. Dim. Anal. Quant. Probab. Rel. Top. 7 (2004), 1–27. MR2021645

[64]   Ivanoff G. Merzbach E.: Set-indexed martingales. Monographs on statistics and Applied Probability, 85. Chapman Hall/CRC.(2000) MR1733295

[65]   Jones J.D.S Léandre R.: Lp Chen forms on loop spaces. In “Stochastic analysis” Barlow M. Bingham N. eds. Cambridge University Press (1991), 104–162. MR1166409

[66]   Kallianpur G. Mandrekar V.: The Markov property for generalized Gaussian random fields. In “Processus Gaussiens et distribution aléatoires”. X. Fernique P.A. Meyer eds. Ann. Inst. Fourier 24 (1974), 143–167. MR0405569

[67]   Klauder J.R. Shabanov S.V.: An introduction to coordinate-free quantization and its application to constrained systems. in “Mathematical methods of quantum physics” (Jagna. 1998). C.C. Bernido edt.Gordon and Breach. (1999), 117–131. MR1723670

[68]   Kimura T. Stasheff J. Voronov A.: An operad structure of moduli spaces and string theory. Com. Math. Phys. 171 (1995), 1–25. MR1341693

[69]   Kohatsu-Higa A., Marquez-Carreras D., Sanz-Solé M.: Logarithmic estimates for the density of hypoelliptic two-parameter diffusions. J. Funct. Anal. 190 (2002), 481–506. MR1899492

[70]   Konno H.: Geometry of loop groups and Wess-Zumino-Witten models. In “Symplectic geometry and quantization” Maeda Y. Omori H. Weinstein A. edt. Contemp. Math. 179 (1994), 139–160. MR1319606

[71]   Kotani S.: On a Markov property for stationary Gaussian processes with a multidimensional parameter. In “2nd Japan-Ussr Symp. of Probab”. G. Maruyama Y. Prokhorov eds. Lect. Notes Math. 330 Springer (1973), 76–116. MR0443055

[72]   Kriegl A. Michor P.W.: The convenient setting of global analysis. Amer. Math. Soc. (1997). MR1471480

[73]   Kuensch A.: Gaussian Markov random fields. J. Fac. Sci. Univ. Tokyo. Sect. IA. 26 (1979), 53–73. MR0539773

[74]   Kuo H.H.: Diffusion and Brownian motion on infinite dimensional manifolds. Trans. Amer. Math. Soc. 159 (1972), 439–451. MR0309206

[75]   Kuo H.H.: Gaussian measures in Banach spaces. Lect. Notes Math. 463. Springer (1975). MR0461643

[76]   Kusuoka S.: Oral communication to J.M. Bismut (1986).

[77]   Léandre R.: A simple proof of a large deviation theorem. In “Stochastic analysis”. D. Nualart, M. Sanz-Solé edt. Progr. Probab. 32 Birkhäuser (1993), 72–76. MR1265044

[78]   Léandre R.: Integration by parts and rotationally invariant Sobolev Calculus on free loop spaces. In “XXVIII Winter School of theoretical physics”. R. Gielerak A. Borowiec edt. J. Geom. Phys. 11 (1993), 517–528. MR1230447

[79]   Léandre R.: Invariant Sobolev Calculus on free loop space. Acta. Appl. Math. 46 (1997), 267–350. MR1440476

[80]   Léandre R.: Cover of the Brownian bridge and stochastic symplectic action. Rev. Math. Phys. 12 (2000), 91–137. MR1750777

[81]   Léandre R.: Logarithmic Sobolev inequalities for differentiable paths. Osaka J. Math. 37 (2000), 139–145. MR1750273

[82]   Léandre R.: Large deviation for non-linear random fields. Nonlinear Phenom. Complex Syst. 4 (2001), 306–309. MR1947985

[83]   Léandre R.: Analysis over loop space and topology. Math. Notes 72 (2002), 212–229.

[84]   Léandre R.: An example of a Brownian non linear string theory. In “Quantum limits to the second law”. D. Sheehan edt. Amer. Inst. Phys. (2002), 489–493. MR2008224

[85]   Léandre R.: Stochastic Wess-Zumino-Novikov-Witten model on the torus. J. Math. Phys. 44 (2003), 5530–5568. MR2023542

[86]   Léandre R.: Super Brownian motion on a loop group. In “XXXIVth symposium of Math. Phys. of Torun” R. Mrugala edt. Rep. Math. Phys. 51 (2003), 269–274. MR1999118

[87]   Léandre R.: Brownian surfaces with boundary and Deligne cohomology. Rep. Math. Phys. 52 (2003), 353–362. MR2029766

[88]   Léandre R. Brownian cylinders and intersecting branes. Rep. Math. Phys. 52 (2003), 363–372. MR2029767

[89]   Léandre R.: Markov property and operads. In “Quantum limits in the second law of thermodynamics”. I. Nikulov D. Sheehan edt. Entropy 6 (2004), 180–215. MR2081873

[90]   Léandre R.: Bundle gerbes and Brownian motion. In “Lie theory and its applications in physics. V” Doebner H.D. Dobrev V.K. edt. World Scientific (2004), 342–352. MR2172912

[91]   Léandre R.: Dixmier-Douady sheaves of groupoids and brownian loops. In “Global analysis and applied mathematics.” K. Tas edt. Amer. Inst. Phys. (2004), 200–206.

[92]   Léandre R. Brownian pants and Deligne cohomology. J. Math. Phys. 46. 3 (2005) MR2125578

[93]   Léandre R.: Two examples of stochastic field theories. Osaka Journal Mathematics. 42 (2005), 353–365. MR2147732

[94]   Léandre R.: Galton-Watson tree and branching loops. In “Geometry, Integrability and Quantization VI”I. Mladenov, A. Hirshfeld eds. Softex. (2005), 276–284. MR2161774

[95]   Léandre R.: Random spheres as a 1+1 dimensional field theory. In “FIS 2005”. M. Petitjean edt.Electronic: www.mdpi.org/fis2005/

[96]   Léandre R.: Stochastic Poisson-Sigma model. To appear Ann. Scu. Nor. Sup. Pisa.

[97]   Léandre R.: Heat kernel measure on central extension of current groups in any dimension.

[98]   Léandre R. Roan S.S.: A stochastic approach to the Euler-Poincaré number of the loop space of a developable orbifold. J. Geom. Phys. 16 (1995), 71–98. MR1325163

[99]   Léandre R. Russo F.: Estimation de Varadhan pour les diffusions a deux parametres. Probab. Theory Rel. Fields 84 (1990), 429–451. MR1042059

[100]   Léandre R. Weber M.: Une représentation gaussienne de l’indice d’un opérateur. Séminaire de Probabilités XXIV. Lect. Notes Math. 1426 (1990), 105–106.

[101]   Maier P. Neeb K.H.: Central extension of current groups. Math. Ann. 326 (2003), 367–415. MR1990915

[102]   Mandelstam S.: Dual resonance models. Phys. Rep. 13 (1974), 259–353.

[103]   Meyer P.A.: Flot d’une équation différentielle stochastique. Séminaire de Probabilités XV. Lect. Notes Math. 850 (1981), 100–117.

[104]   Meyer P.A.: Quantum probability for probabilists. Lect. Notes Math. 1538 (1993). MR1222649

[105]   Molchan G.M.: Characterization of Gaussian fields with Markov property. Math. Dokl. 12 (1971), 563–567.

[106]   Neidhardt A.L.: Stochastic integrals in 2-uniformly smooth Banach spaces. University of Wisconsin (1978).

[107]   Molchanov S.: Diffusion processes and Riemannian geometry. Russ. Math. Surveys. 30 (1975), 1–63. MR0413289

[108]   Nelson E.: The free Markov field. J. Funct. Anal. 12 (1973), 217–227. MR0343816

[109]   Nie Z.: Pathwise uniqueness of solutions of two-parameter Itô stochastic differential equations. Acta Math. Sinica 30 (1987), 179–186. MR0891923

[110]   Norris J.R.: Twisted sheets. J. Funct. Anal. 132 (1995), 273–334. MR1347353

[111]   Nualart D.: Application du calcul de Malliavin aux équations différentielles stochastiques sur le plan. Séminaire de probabilités XX, 1984/1985, 379–395. Lect. Notes Math. 1204, Springer (1986). MR0942033

[112]   Nualart D.: The Malliavin Calculus and related topics. Springer (1996). MR2200233

[113]   Nualart D. Sanz M.: Stochastic differential equations on the plane: smoothness of the solution. J. Multivariate Anal. 31 (1989), 1–29. MR1022349

[114]   N’zi M.: On large deviation estimates for two parameter diffusion processes and applications. Stochastics. Stochastics Rep. 50 (1994), 65–83. MR1784744

[115]   Pisier G.: Martingales with values in uniformly convex spaces. Israel J. Math. 20 (1976), 326–350. MR0394135

[116]   Pitt L.: A Markov property for Gaussian processes with a multidimensional time. J. Rat. Mech. Anal. 43 (1971), 369–391. MR0336798

[117]   Rogers A.: Anticommuting variables, fermionic path integrals and supersymmetry. In“XXVIIIth Winter School of theoretical physics” R. Gielerak A. Borowiec edt. J. Geom. Phys. 11 (1993), 491–504. MR1230445

[118]   Rogers A.: Supersymmetry and Brownian motion on supermanifolds. In “Probability and geometry” R. Léandre edt. Inf. Dim. Anal. Quant. Probab. Rel. Top. 6 (2003), 83–103. MR2074769

[119]   Segal G.: Two dimensional conformal field theory and modular functor. In “IX Int. Cong. Math. Phys” Hilger (1989), 22–37. MR1033753

[120]   Shavgulidze E.T.: Quasi-invariant measures on groups of diffeomorphisms. Proc. Steklov. Inst. 217 (1997), 181–202. MR1632120

[121]   Souriau J.M.: Un algorithme générateur de structures quantiques. In “Elie Cartan et les mathématiques d’aujourd’hui” Astérisque (1989), 341–399. MR0837208

[122]   Tsukada H.: String path integral realization of vertex operator algebras. Mem. Amer. Math. Soc. 444. Amer. Math. Soc. (1991) MR1052556

[123]   Yeh J.: Existence of strong solutions for stochastic differential equations in the plane. Pacific J. Math. 97 (1981), 217–247. MR0638191

[124]   Warner F.W.: Foundations of differentiable manifolds and Lie groups. New-York (1983). MR0722297

[125]   Wentzel A.D., Freidlin M.J.: Random perturbations of dynamical systems. Springer (1984). MR0722136

[126]   Witten E.: Physics and geometry. Int. Congress. Math. A.M.S. (1987), 267–303. MR0934227

[127]   Witten E.: The Index of the Dirac operator in loop space. In “Elliptic curves and modular forms in algebraic topology” P.S. Landweber edt. Lect. Notes Math. 1326 (1988), 161–181. MR0970288

Home | Current | Past volumes | About | Login | Notify | Contact | Search

Probability Surveys. ISSN: 1549-5787