Home  Current  Past volumes  About  Login  Notify  Contact  Search  


References[1] R. Arratia, A. Barbour and S. Tavaré, Logarithmic combinatorial structures: a probabilistic approach, Eur. Math. Soc. Publ. House, Zürich, 2003. MR2032426 [2] M. Archibald, A. Knopfmacher, H. Prodinger, The number of distinct values in a geometrically distributed sample, Eur. J. Combin. 27 10591081, 2006. MR2259938 [3] R.R. Bahadur, On the number of distinct values in a large sample from an infinite discrete distribution, Proc. Nat. Inst. Sci. India 26A Supp. II: 6775, 1960. MR0137256 [4] A.D. Barbour and A.V. Gnedin, Regenerative compositions in the case of slow variation, Stoch. Proc. Appl. 116: 10121047, 2006. MR2238612 [5] J. Berestycki, N. Berestycki and J. Schweinsberg, Betacoalescents and continuum stable random trees, 2006 (available at arXiv). [6] J. Bertoin, Random fragmentation and coagulation processes, Cambridge University Press, 2006. MR2253162 [7] N.H. Bingham, C.M. Goldie and J.L. Teugels, Regular variation, Cambridge University Press, 1987. MR0898871 [8] L. Bogachev, A. Gnedin and Y. Yakubovich, On the variance of the number of occupied boxes, Adv. Appl. Math. 2007 (available at arXiv). [9] J. Bunge and M. Fitzpatrick, Estimating the number of species: a review, J. Am. Statist. Assoc. 88: 364–373, 1993. [10] S. Chaudhuri, R. Motwani and V. Narasayya, Random sampling for histogram construction: how much is enough?, Proc. 1998 ACM SIGMOD Conf. on Management of Data 436–447, ACM Press, N.Y., 1998. [11] E. Csaki and A. Foldes, On the first emtpy cell, Studia Sci. Math. Hungar, 11: 373382, 1976. MR0554583 [12] M. Dutko, Central limit theorems for infinite urn models, Ann. Probab. 17: 12551263, 1989. MR1009456 [13] B. Eisenberg, G. Stengle and G. Strang, The asymptotic probability of a tie for first place, Ann. Appl. Probab. 3: 731745, 1993. MR1233622 [14] W.E.Y. Elliott and R.J. Valenza, And then there were none: winnowing the Shakespeare claimants, Computers and the Humanities 30:191–245, 1996. [15] W. Feller, An introduction to probability theory and its applications, vol. II, Wiley, NY, 1971. MR0270403 [16] D. Freedman, Another note on the BorelCantelli lemma and the strong law, with the Poisson approximation as a byproduct, Ann. Probab. 1: 910925, 1973. MR0370711 [17] S. K. Formanov and A. Asimov, A limit theorem for the separable statistic in a random assignement scheme, J. Math. Sci. 38: 24052411, 1987. [18] A. Gnedin, The representation of composition structures, Ann. Probab. 25: 14371450, 1997. MR1457625 [19] A. Gnedin, The Bernoulli sieve, Bernoulli 10: 7996, 2004. MR2044594 [20] A. Gnedin and J. Pitman, Moments of convex distributions and completely alternating sequences, IMS Lecture Notes (Freedman’s Festschrift), 2007 (available at arXiv). [21] A. Gnedin and J. Pitman, Regenerative composition structures, Ann. Probab. 33: 445479, 2005. MR2122798 [22] A. Gnedin, J. Pitman and M. Yor, Asymptotic laws for compositions derived from transformed subordinators, Ann. Probab. 34: 468492, 2006. MR2223948 [23] A. Gnedin, J. Pitman and M. Yor, Asymptotic laws for regenerative compositions: gamma subordinators and the like, Probab. Theory Related Fields 135: 576602, 2006. MR2240701 [24] A. Gnedin and Y. Yakubovich, Recursive partition structures, Ann. Probab. 34: 22032218, 2006. [25] H.K. Hwang and S. Janson, Local limit theorems for finite and infinite urn models, 2006 (available at arXiv). [26] Ivanov, V.A., Ivchenko, G.I. and Medvedev, Yu.I. Discrete problems in probability theory, J. Math. Sci 31: 27592795, 1985. MR0778384 [27] N.L. Johnson and S. Kotz (1977), Urn models and their application: an approach to modern discrete probability theory. Wiley, New York. MR0488211 [28] S. Karlin, Central limit theorems for certain infinite urn schemes, J. Math. Mech., 17: 373401, 1967. MR0216548 [29] V.F. Kolchin, B.A. Sevast’yanov and V.P. Chistyakov, Random allocations, V.H. Winston & Sons, Washington, D.C.; distributed by Halsted Press (John Wiley & Sons), New York, 1978. MR0471016 [30] G. Louchard, H. Prodinger and M.D. Ward, The number of distinct values of some multiplicity in sequences of geometrically distributed random variables. 2005 Int. Conf. Anal. Algorithms, DMTCS proc. AD: 231256, 2005. MR2193122 [31] V. G. Mikhailov, The central limit theorem for the scheme of independent placements of particles among cells, Trudy Steklov Math. Inst. (MIAN) 157: 138152, 1981. MR0651763 [32] J. Pitman, Partition structures derived from Brownian motion and stable subordinators, Bernoulli 3: 7996, 1997. MR1466546 [33] J. Pitman, Combinatorial stochastic processes, Springer L. Notes Math. vol. 1875, 2006. MR2245368 [34] C.J. Skinner and M.J. Elliot, A measure of disclosure risk for microdata, J. Roy. Statist. Soc. B 64:855–867, 2002. MR1979391 

Home  Current  Past volumes  About  Login  Notify  Contact  Search Probability Surveys. ISSN: 15495787 