Equivariant adjusted least squares estimator in two-line fitting model

Sergiy Shklyar

Abstract


We consider the two-line fitting problem. True points lie on two straight lines and are observed with Gaussian perturbations. For each observed point, it is not known on which line the corresponding true point lies. The parameters of the lines are estimated.

This model is a restriction of the conic section fitting model because a couple of two lines is a degenerate conic section. The following estimators are constructed: two projections of the adjusted least squares estimator in the conic section fitting model, orthogonal regression estimator, parametric maximum likelihood estimator in the Gaussian model, and regular best asymptotically normal moment estimator.

The conditions for the consistency and asymptotic normality of the projections of the adjusted least squares estimator are provided. All the estimators constructed in the paper are equivariant. The estimators are compared numerically.


Keywords


Conic section fitting; curve fitting; subspace clustering

Full Text:

PDF

References


[1] Ahn, S.J.: Least Squares Orthogonal Distance Fitting of Curves and Surfaces in Space. Springer, Heidelberg (2004). doi:10.1007/b104017

[2] Bilmes, J.A.: A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models. Technical report TR-97-021, International Computer Science Institute (1998)

[3] Cheng, C.-L., Van Ness, J.W.: Statistical Regression with Measurement Error. Arnold, London (1999). MR1719513

[4] Chiang, C.L.: On regular best asymptotically normal estimates. Ann. Math. Stat. 27(2), 336–351 (1956). doi:10.1214/aoms/1177728262 MR0089558

[5] Fazekas, I., Kukush, A., Zwanzig, S.: Correction of nonlinear orthogonal regression estimator. Ukr. Math. J. 56(8), 1308–1330 (2004). MR2136312. doi:10.1007/s11253-005-0059-0

[6] Kukush, A., Markovsky, I., Van Huffel, S.: Consistent fundamental matrix estimation in a quadratic measurement error model arising in motion analysis. Comput. Stat. Data Anal. 41(1), 3–18 (2002). MR1944689. doi:10.1016/S0167-9473(02)00068-3

[7] Kukush, A., Markovsky, I., Van Huffel, S.: Correction of nonlinear orthogonal regression estimator. Comput. Stat. Data Anal. 47(1), 123–147 (2004). MR2087933. doi:10.1016/j.csda.2003.10.022

[8] Markovsky, I., Van Huffel, S., Kukush, A.: On the computation of the multivariate structured total least squares estimator. Numer. Linear Algebra Appl. 11(5–6), 591–608 (2004). MR2067822. doi:10.1002/nla.361

[9] Repetatska, G.: An improved orthogonal regression estimator for the implicit functional errors-in-variables model. Bull. Kyiv Natl. Taras Shevchenko Univ. Math. Mech. 23, 37–45 (2010)

[10] Rohatgi, V.K., Székely, G.J.: Sharp inequalities between skewness and kurtosis. Stat. Probab. Lett. 8(4), 296–299 (1989). MR1028986. doi:10.1016/0167-7152(89)90035-7

[11] Shklyar, S., Kukush, A., Markovsky, I., Van Huffel, S.: On the conic section fitting problem. J. Multivar. Anal. 98(3), 588–624 (2007). MR2293016. doi:10.1016/j.jmva.2005.12.003

[12] Shklyar, S.V.: Singular asymptotic normality of an estimator in the conic section fitting problem. I. Teor. Imovir. Mat. Stat. 92, 137–150 (2015)

[13] Shklyar, S.V.: Singular asymptotic normality of an estimator in the conic section fitting problem. II. Teor. Imovir. Mat. Stat. 93, 163–180 (2015)

[14] Vidal, R., Ma, Y., Sastry, S.: Generalized principal component analysis (GPCA). IEEE Trans. Pattern Anal. Mach. Intell. 27(12), 1945–1959 (2005). doi:10.1109/TPAMI.2005.244

[15] Waibel, P., Matthes, J., Gröll, L.: Constrained ellipse fitting with center on a line. J. Math. Imaging Vis. 53(3), 364–382 (2015). MR3397105. doi:10.1007/s10851-015-0584-x

[16] Zelnik-Manor, L., Irani, M.: Multi-view subspace constraints on homographies. In: Proceedings of the 7th IEEE International Conference on Computer Vision, 1999, vol. 2, pp. 710–7152 (1999). doi:10.1109/ICCV.1999.790291




DOI: http://dx.doi.org/10.15559/16-VMSTA47

Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 Sergiy Shklyar

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.