Minimax interpolation of sequences with stationary increments and cointegrated sequences

Maksym Luz, Mikhail Moklyachuk

Abstract


We consider the problem of optimal estimation of the linear functional $A_N{\xi}=\sum_{k=0}^{N}a(k)\xi(k)$ depending on the unknown values of a stochastic sequence $\xi(m)$ with stationary increments from observations of the sequence $\xi(m)+\eta (m)$ at points of the set $\mathbb{Z}\setminus\{0,1,2,\ldots,N\}$, where $\eta(m)$ is a stationary sequence uncorrelated with $\xi(m)$. We propose formulas for calculating the mean square error and the spectral characteristic of the optimal linear estimate of the functional in the case of spectral certainty, where spectral densities of the sequences are exactly known. We also consider the problem for a class of cointegrated sequences. We propose relations that determine the least favorable spectral densities and the minimax spectral characteristics in the case of spectral uncertainty, where spectral densities are not exactly known while a set of admissible spectral densities is specified.

Keywords


Stochastic sequence with stationary increments; cointegrated sequences; minimax-robust estimate; mean square error; least favorable spectral density; minimax-robust spectral characteristic

Full Text:

PDF

References


[1] Bell, W.: Signal extraction for nonstationary time series. Ann. Stat. 12(2), 646–664 (1984). MR0740918. doi:10.1214/aos/1176346512

[2] Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis. Forecasting and Control. 3rd edn. Englewood Cliffs, NJ, Prentice Hall (1994). MR1312604

[3] Chigira, H., Yamamoto, T.: Forecasting in large cointegrated processes. J. Forecast. 28(7), 631–650 (2009). MR2744389. doi:10.1002/for.1076

[4] Clements, M.P., Hendry, D.F.: Forecasting in cointegrated systems. J. Appl. Econom. 10, 127–146 (1995)

[5] Engle, R.F., Granger, C.W.J.: Co-integration and error correction: Representation, estimation and testing. Econometrica 55, 251–276 (1987). MR0882095. doi:10.2307/1913236

[6] Franke, J.: Minimax robust prediction of discrete time series. Z. Wahrscheinlichkeitstheor. Verw. Geb. 68, 337–364 (1985). MR0771471. doi:10.1007/BF00532645

[7] Gikhman, I.I., Skorokhod, A.V.: The Theory of Stochastic Processes. I. Springer, Berlin (2004). MR2058259

[8] Granger, C.W.J.: Cointegrated variables and error correction models. UCSD Discussion paper 83-13a (1983)

[9] Gregoir, S.: Fully modified estimation of seasonally cointegrated processes. Econom. Theory 25(5), 1491–1528 (2010). MR2684793. doi:10.1017/S026646660999065X

[10] Grenander, U.: A prediction problem in game theory. Ark. Mat. 3, 371–379 (1957). MR0090486

[11] Ioffe, A.D., Tihomirov, V.M.: Theory of Extremal Problems. North–Holland Publishing Company, Amsterdam, New York, Oxford (1979). MR0528295

[12] Johansen, S.: Representation of cointegrated autoregressive processes with application to fractional processes. Econom. Rev. 28, 121–145 (2009). MR2487849. doi:10.1080/07474930802387977

[13] Kolmogorov, A.N.: Selected Works by A.N. Kolmogorov. Vol. II: Probability Theory and Mathematical Statistics. A.N. Shiryayev (ed.) Math Appl. Sov. Ser., vol. 26, Kluwer Academic Publishers, Dordrecht, etc. (1992). MR1153022

[14] Luz, M., Moklyachuk, M.: Minimax-robust filtering problem for stochastic sequences with stationary increments and cointegrated sequences. Stat. Optim. Inf. Comput. 2(3), 176–199 (2014). MR3351379. doi:10.19139/56

[15] Luz, M., Moklyachuk, M.: Minimax-robust prediction problem for stochastic sequences with stationary increments and cointegrated sequences. Stat. Optim. Inf. Comput. 3(2), 160–188 (2015). MR3352757. doi:10.19139/132

[16] Luz, M.M., Moklyachuk, M.P.: Interpolation of functionals of stochastic sequences with stationary increments. Theory Probab. Math. Stat. 87, 117–133 (2013). MR3241450. doi:10.1090/S0094-9000-2014-00908-4

[17] Luz, M.M., Moklyachuk, M.P.: Minimax-robust filtering problem for stochastic sequence with stationary increments. Theory Probab. Math. Stat. 89, 127–142 (2014). MR3235180. doi:10.1090/S0094-9000-2015-00940-6

[18] Moklyachuk, M.: Minimax-robust estimation problems for stationary stochastic sequences. Stat. Optim. Inf. Comput. 3(4), 348–419 (2015). MR3435278

[19] Moklyachuk, M., Luz, M.: Robust extrapolation problem for stochastic sequences with stationary increments. Contemp. Math. Stat. 1(3), 123–150 (2013)

[20] Moklyachuk, M.P.: Robust Estimations of Functionals of Stochastic Processes. Kyivskyi University, Kyiv (2008)

[21] Pinsker, M.S.: The theory of curves with nth stationary increments in Hilbert spaces. Izv. Akad. Nauk SSSR, Ser. Mat. 19(5), 319–344 (1955). MR0073957

[22] Pshenichnyi, B.N.: Necessary Conditions of an Extremum. Nauka, Moskva (1982). MR0686452

[23] Rockafellar, R.T.: Convex Analysis. Princeton University Press (1997). MR1451876

[24] Rozanov, Y.A.: Stationary Stochastic Processes. Holden-Day, San Francisco (1967). MR0214134

[25] Salehi, H.: Algorithms for linear interpolator and interpolation error for minimal stationary stochastic processes. Ann. Probab. 7(5), 840–846 (1979). MR0542133

[26] Vastola, K.S., Poor, H.V.: An analysis of the effects of spectral uncertainty on Wiener filtering. Automatica 28, 289–293 (1983). MR0740656

[27] Wiener, N.: Extrapolation, Interpolation and Smoothing of Stationary Time Series: With Engineering Applications. MIT Press, Cambridge (1966)

[28] Yaglom, A.M.: Correlation theory of stationary and related random processes with stationary nth increments. Mat. Sb. 37(79)(1), 141–196 (1955). MR0071672

[29] Yaglom, A.M.: Correlation Theory of Stationary and Related Random Functions. Vol. 1: Basic Results. Springer, New York etc. (1987). MR0893393

[30] Yaglom, A.M.: Correlation Theory of Stationary and Related Random Functions. Vol. 2: Supplementary Notes and References. Springer, New York, etc. (1987). MR0915557




DOI: http://dx.doi.org/10.15559/16-VMSTA51

Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 Maksym Luz, Mikhail Moklyachuk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.