Bonus–malus systems with different claim types and varying deductibles

Olena Ragulina

Abstract


The paper deals with bonus–malus systems with different claim types and varying deductibles. The premium relativities are softened for the policyholders who are in the malus zone and these policyholders are subject to per claim deductibles depending on their levels in the bonus–malus scale and the types of the reported claims. We introduce such bonus–malus systems and study their basic properties. In particular, we investigate when it is possible to introduce varying deductibles, what restrictions we have and how we can do this. Moreover, we deal with the special case where varying deductibles are applied to the claims reported by policyholders occupying the highest level in the bonus–malus scale and consider two allocation principles for the deductibles. Finally, numerical illustrations are presented.

Keywords


Bonus–malus system; claim type; varying deductible; indifference principle; allocation principle; premium relativity; Markov chain; transition matrix; stationary distribution

Full Text:

PDF

References


[1] Bonsdorff, H.: On asymptotic properties of bonus–malus systems based on the number and on the size of the claims. Scand. Actuar. J. 2005, 309–320 (2005). MR2164049. doi:10.1080/03461230510009826

[2] Denuit, M., Dhaene, J.: Bonus–malus scales using exponential loss functions. Blätter DGVFM 25, 13–27 (2001)

[3] Denuit, M., Maréchal, X., Pitrebois, S., Walhin, J.-F.: Actuarial Modelling of Claim Counts: Risk Classification, Credibility and Bonus–Malus Systems. John Wiley & Sons, Chichester (2007). MR2384837. doi:10.1002/9780470517420

[4] Dionne, G., Vanasse, C.: A generalization of actuarial automobile insurance rating models: the negative binomial distribution with a regression component. ASTIN Bull. 19, 199–212 (1989)

[5] Dionne, G., Vanasse, C.: Automobile insurance ratemaking in the presence of asymmetrical information. J. Appl. Econom. 7, 149–165 (1992)

[6] Frangos, N.E., Vrontos, S.D.: Design of optimal bonus–malus systems with a frequency and a severity component on an individual basis in automobile insurance. ASTIN Bull. 31, 1–22 (2001). MR1945629. doi:10.2143/AST.31.1.991

[7] Gómez-Déniz, E.: Bivariate credibility bonus–malus premiums distinguishing between two types of claims. Insur. Math. Econ. 70, 117–124 (2016). MR3543037. doi:10.1016/j.insmatheco.2016.06.009

[8] Gómez-Déniz, E., Hernández-Bastida, A., Fernández-Sánchez, M.P.: Computing credibility bonus–malus premiums using the total claim amount distribution. Hacet. J. Math. Stat. 43, 1047–1061 (2014). MR3331161

[9] Holtan, J.: Bonus made easy. ASTIN Bull. 24, 61–74 (1994)

[10] Lemaire, J.: Bonus–Malus Systems in Automobile Insurance. Kluwer Academic Publisher, Boston (1995)

[11] Lemaire, J., Zi, H.: High deductibles instead of bonus–malus. Can it work? ASTIN Bull. 24, 75–88 (1994)

[12] Mahmoudvand, R., Hassani, H.: Generalized bonus–malus systems with a frequency and a severity component on an individual basis in automobile insurance. ASTIN Bull. 39, 307–315 (2009). MR2749888. doi:10.2143/AST.39.1.2038066

[13] Mert, M., Saykan, Y.: On a bonus–malus system where the claim frequency distribution is geometric and the claim severity distribution is Pareto. Hacet. J. Math. Stat. 34, 75–81 (2005). MR2212712

[14] Norberg, R.: A credibility theory for automobile bonus system. Scand. Actuar. J. 1976, 92–107 (1976). MR0428666. doi:10.1080/03461238.1976.10405605

[15] Pinquet, J.: Allowance for cost of claims in bonus–malus systems. ASTIN Bull. 27, 33–57 (1997)

[16] Pinquet, J.: Designing optimal bonus–malus systems from different types of claims. ASTIN Bull. 28, 205–220 (1998)

[17] Pitrebois, S., Denuit, M., Walhin, J.-F.: Bonus–malus systems with varying deductibles. ASTIN Bull. 35, 261–274 (2005). MR2143217. doi:10.2143/AST.35.1.583175

[18] Pitrebois, S., Denuit, M., Walhin, J.-F.: Multi-event bonus–malus scales. J. Risk Insur. 73, 517–528 (2006)

[19] Rolski, T., Schmidli, H., Schmidt, V., Teugels, J.: Stochastic Processes for Insurance and Finance. John Wiley & Sons, Chichester (1999). MR1680267. doi:10.1002/9780470317044

[20] Tzougas, G., Vrontos, S., Frangos, N.: Optimal bonus–malus systems using finite mixture models. ASTIN Bull. 44, 417–444 (2014). MR3389581. doi:10.1017/asb.2013.31




DOI: http://dx.doi.org/10.15559/17-VMSTA80

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Olena Ragulina

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.